K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

a, Ta có : \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\Rightarrow x=\frac{17}{10};y=\frac{119}{50}\)

26 tháng 7 2021

b, Ta có : \(\frac{x}{y}=-\frac{3}{7}\Rightarrow\frac{x}{-3}=\frac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=-\frac{40}{-10}=4\Rightarrow x=-12;y=28\)

23 tháng 2 2020

câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)  

b) xy=-5 với x>y=>x=1,y=-5

c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5  => x=-1, y=-3

                              * x+1=-5 và y-2=1=> x=-6 , y=3

câu 2 , câu 3 tương tự

11 tháng 7 2019

1a) \(0,31:0,91=x:\frac{49}{3}\)

=> \(\frac{0,31}{0,91}=\frac{3x}{49}\)

=> \(3x=\frac{3}{7}.49\)

=> \(3x=21\)

=> \(x=21:3=7\)

b) \(6,88:x=12:27\)

=> \(\frac{6,88}{x}=\frac{12}{27}\)

=> \(x=6,88:\frac{4}{9}\)

=> \(x=15,48\)

c) \(\frac{25}{3}:\frac{35}{3}=13:2x\)

=> \(\frac{13}{2x}=\frac{5}{7}\)

=> \(2x=13:\frac{5}{7}\)

=> \(2x=\frac{91}{5}\)

=> \(x=\frac{91}{5}:2=\frac{91}{10}\)

d) \(\left(x-1\right):24,5=5:8,75\)

=> \(\frac{x-1}{24,5}=\frac{5}{8,75}\)

=> \(x-1=\frac{4}{7}.24,5\)

=> \(x-1=14\)

=> \(x=14+1=15\)

11 tháng 7 2019

2a) Ta có: \(\frac{x}{y}=\frac{5}{7}\) => \(\frac{x}{5}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)

=> \(\hept{\begin{cases}\frac{x}{5}=0,34\\\frac{y}{7}=0,34\end{cases}}\) => \(\hept{\begin{cases}x=0,34.5=1,7\\y=0,34.7=2,38\end{cases}}\)

Vậy x = 1,7; y = 2,38

b) Ta có: \(\frac{x}{y}=-\frac{3}{7}\) => \(\frac{x}{-3}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=\frac{-40}{-10}=4\)

=> \(\hept{\begin{cases}\frac{x}{-3}=4\\\frac{y}{7}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.\left(-3\right)=-12\\y=4.7=28\end{cases}}\)

vậy x = -12; y = 28

c) Ta có: \(\frac{x}{y}=\frac{3}{5}\) => \(\frac{x}{3}=\frac{y}{5}\)

Đặt : \(\frac{x}{3}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=5k\end{cases}}\) (*)

Khi đó, ta có: xy = 1215

hay 3k. 5k = 1215

=> 15k2 = 1215

=> k2 = 1215 : 15 = 81

=> k = \(\pm\)

Thay k = \(\pm\)9 vào (*), ta được:

+) x = 3. (\(\pm\)9) = \(\pm\)27

+) y = 5. (\(\pm\)9) = \(\pm\)45

Vậy ...

2 tháng 11 2017

a) Theo đề ta có : \(\frac{x}{5}=\frac{y}{7}\)và  \(x+y=4,08\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

       \(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)

*  \(\frac{x}{5}=0,34\Rightarrow x=0,34\cdot5=1,7\)

*  \(\frac{y}{7}=0,34\Rightarrow y=0,34\cdot7=2.38\)

b)  Theo đề ta có : \(\frac{x}{-3}=\frac{y}{7}\)và  \(x-y=-40\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=-\frac{40}{-10}=4\)

*  \(\frac{x}{-3}=4\Rightarrow x=4\cdot\left(-3\right)=-12\)

*  \(\frac{y}{7}=4\Rightarrow y=4\cdot7=28\)

2 tháng 11 2017

bạn tính theo kiểu tổng tỷ, hiệu tỷ được đấy

a, \(\Leftrightarrow x=\left[4,08:\left(5+7\right)\right]:2\)

\(\Rightarrow x=0,17\)

b,\(\Leftrightarrow x=\left\{-40:\left[7-\left(-3\right)\right]\right\}:2\)

\(\Rightarrow x=-2\)

6 tháng 8 2017

\(\frac{x}{y}=\frac{5}{7}=\frac{x}{7}=\frac{y}{5}\) và x + y = 4,08

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{7}=\frac{y}{5}=\frac{x+y}{7+5}=\frac{4,08}{12}=\frac{17}{50}\)

\(\frac{x}{7}=\frac{17}{50}\Rightarrow x=\frac{17.7}{50}=\frac{119}{50}\)

\(\frac{y}{5}=\frac{17}{50}\Rightarrow y=\frac{17.5}{50}=\frac{17}{10}\)

Vậy..

Còn 2 cách kia là j??? 

6 tháng 8 2017

a, \(\frac{x}{y}=\frac{5}{7}\)và x+y=4,08

Ta có: 4,08=\(\frac{102}{25}\)

 \(\frac{x}{y}=\frac{5}{7}\Rightarrow7x=5y\)

\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)và x+y=\(\frac{102}{25}\)

theo t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{\frac{102}{25}}{12}=\frac{17}{50}\)

\(\Rightarrow\frac{x}{5}=\frac{17}{50}\Rightarrow x=\frac{17}{10}\)

\(\frac{y}{7}=\frac{17}{50}\Rightarrow y=\frac{119}{50}\)

vậy x=

      y=

27 tháng 7 2023

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{80}{1}=80\)

\(\Rightarrow\dfrac{x}{7}=80\Rightarrow x=80\cdot7=560\)

\(\Rightarrow\dfrac{y}{6}=80\Rightarrow y=80\cdot6=480\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có::

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{12}{11}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{12}{11}\Rightarrow x=\dfrac{4\cdot12}{11}=\dfrac{48}{11}\)

\(\Rightarrow\dfrac{y}{7}=\dfrac{12}{11}\Rightarrow y=\dfrac{7\cdot12}{11}=\dfrac{84}{11}\)

Mình làm mẫu 2 câu thôi nhé

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

10 tháng 1 2017

a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

              \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)

Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2 x 10 = 20

      y = 2 x 15 = 30

      z = 2 x 21 = 42

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=> x = 2k ; y = 3k

=> xy = 6.k2

=> 54 = 6.k2

=> k2 = 54 : 6 = 9

=> k = 3 hoặc k = -3

=> x =  3 x 2=6 hoặc x =( -3) x 2 = -6

     y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9

10 tháng 1 2017

\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)  \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

\(\text{Áp dụng tính chất DTSBN có}\)

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)

\(\text{Vậy }x=20;y=30;z=42\)

\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(\text{Theo đề, ta có}\)

\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)

\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\)    \(y=3.3=9\text{ hoặc }y=-3.3=-9\) 

\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)

         \(\text{với k=-3\Rightarrow x=-6;y=-9}\)