giúp em b2 b3 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ 1,=20\sqrt{3}+20\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=40\sqrt{3}+\sqrt{3}=41\sqrt{3}\\ 2,A=\dfrac{2\sqrt{x}-9-x+9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{2\sqrt{x}-x+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ c,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\left(4>0\right)\\ \Leftrightarrow x< 9\Leftrightarrow0\le x< 9\)
\(3,\\ 1,A=\sqrt{2}-1-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=\sqrt{2}-1-\sqrt{2}=-1\\ 2,\\ a,P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\left(x\ge0;x\ne4\right)\\ P=\dfrac{4\left(\sqrt{x}+2\right)}{4\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ b,P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)
a+b=-2
=>(a+b)2=4
=>a2+2ab+b2=4 mà a2+b2=29
=>2ab=-25=>ab=-12,5
=>a2-ab+b2=29-(-12,5)=41,5.
=>(a+b)(a2-ab+b2)=-2.41,5=-83
hay a3+b3=-83
2.
a.
\(P=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2}{x-5}=\dfrac{1}{x+5}\)
b.
\(P=-3\Rightarrow\dfrac{1}{x+5}=-3\Rightarrow x+5=-\dfrac{1}{3}\)
\(\Rightarrow x=-\dfrac{16}{3}\)
Thay vào bấm máy ta được \(Q=529\)
3.
a. \(P=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
b.
\(P=4\Rightarrow\dfrac{4}{x-3}=4\Rightarrow x-3=1\)
\(\Rightarrow x=4\)
a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh
\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu
Do đó \(\widehat{A_1}=\widehat{B_3}\)
Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù
=> \(\widehat{A_4}=180^0-\widehat{A_1}\) \((1)\)
Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù
=> \(\widehat{B_2}=180^0-\widehat{B_3}\) \((2)\)
\(\widehat{A_1}=\widehat{B_3}\) \((3)\)
Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)
b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) theo câu a
Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh
\(\widehat{A_1}=\widehat{B_3}\) câu a
Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)
c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù
\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài
Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)
Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù
\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)
1.
a. \(BaCl_2+Na_2SO_4--->BaSO_4\downarrow+2NaCl\)
b. \(Al+3AgNO_3--->Al\left(NO_3\right)_3+3Ag\downarrow\)
c. \(CuSO_4+2NaOH--->Cu\left(OH\right)_2\downarrow+Na_2SO_4\)
d. \(Na_2CO_3+H_2SO_4--->Na_2SO_4+H_2O+CO_2\uparrow\)
Phản ứng trao đổi là PT: a, c, d
Bài 2:
a: Để (d)//(d') thì \(m=2m+1\)
\(\Leftrightarrow-m=1\)
hay m=-1
c: Để (d) cắt (d') thì \(m\ne2m+1\)
hay \(m\ne-1\)
Bài 3:
1) Quy hết hỗn hợp kim loại về kim loại X (hoá trị II)
\(n_{H_2}=\dfrac{6,72}{22,4}=0,3\left(mol\right)\)
PTHH: \(X+2HCl\rightarrow XCl_2+H_2\)
0,3<----------------------0,3
\(\rightarrow M_X=\dfrac{21,7}{0,3}=72,33\left(g\text{/}mol\right)\)
\(\rightarrow M_R< M_X< M_{Ba}\)
Mà R có hoá trị II và có phản ứng với nước
=> R là Ca
2) Gọi \(\left\{{}\begin{matrix}n_{Ba}=x\left(mol\right)\\n_{Ca}=y\left(mol\right)\end{matrix}\right.\)
\(\rightarrow137x+40y=21,7\left(1\right)\)
Mà \(n_R=n_{Ba}+n_{Ca}\)
\(\rightarrow x+y=0,3\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\rightarrow\left\{{}\begin{matrix}x=0,1\left(mol\right)\\y=0,2\left(mol\right)\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}\%m_{Ba}=\dfrac{0,1.137}{21,7}.100\%=63,13\%\\\%m_{Ca}=100\%-63,13\%=36,87\%\end{matrix}\right.\)