\(\frac{x}{40}-\frac{x}{50}=\frac{3}{4}\) giải hộ mình câu này với ( đang làm bài toán = cách lập phương trình )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{6}=2\Rightarrow y=12\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 8
y = 12
z = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50
\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)
=> x = 2.4 = 8
=> y = 2.6 = 12
=> z = 2.15 = 30
Vậy x = 8;y = 12;z = 30.
\(x^2+\frac{9x^3}{\left(x+3\right)^2}=40\left(x\ne-3\right)\)
\(\Leftrightarrow x^2+\left(x+3\right)^2+9x^2=40\left(x+3\right)^2\)
\(\Leftrightarrow x^4+6x^3+18x^2=40x^2+240x+360\)
\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)
\(\Leftrightarrow\left(x^3+10x+30\right)\left(x-6\right)\left(x+2\right)=0\)
Khi x-6=0 hoặc x+2=0 <=> x=6 hoặc x=-2
Khi \(x^3+10x+30=0\)
\(x=\frac{-10+2\sqrt{5}}{2};x=\frac{-10-2\sqrt{5}}{2}\)
Hơi khó hiểu 1 chút, bạn cố gắng nhé
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40^{\left(1\right)}\)
\(ĐKXĐ:x\ne-3\)
\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{3x}{x+3}+\frac{\left(3x\right)^2}{\left(x+3\right)^2}+\frac{6x^2}{x+3}=40\)
\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}=40\)
\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}=40\)
Đặt \(t=\frac{x^2}{x+3}\)ta có
\(t^2+6t=40\)
\(\Leftrightarrow\left(t-4\right)\left(t+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-4=0\\t+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-10\end{cases}}\)
+) Với t =4 ta có
\(\frac{x^2}{x+3}=4\)
\(\Rightarrow4\left(x+3\right)=x^2\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)
+) với x=-10 ta có
\(\frac{x^2}{x+3}=-10\)
\(\Rightarrow-10\left(x+3\right)=x^2\)
\(\Leftrightarrow x^2+10x+30=0\)
\(\Leftrightarrow\left(x+5\right)^2=-5\)
Phương trình vô nghiệm
Vậy............................
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
nếu tìm x thì mk làm đc:
\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)
<=>2x+2x-6=12-2x
<=>4x-6=12-2x
<=>4x-2x=12-6
<=>2x=6<=>x=3
Vậy x=3
để (3-x)50+(y+\(\frac{1}{3}\))50=0 \(\Rightarrow\)(3-x)50 = 0 ; ( y + \(\frac{1}{3}\)) = 0
\(\Rightarrow\)3-x = 0 ; y +\(\frac{1}{3}\)= 0
\(\Rightarrow\)x = 3 ; y =\(\frac{-1}{3}\)
Vì
\(\left(3-x\right)^{50};\left(y+\frac{1}{3}\right)^{50}\)là số nguyên dương
\(\Rightarrow\orbr{\begin{cases}\left(3-x\right)^{50}=0\\\left(y+\frac{1}{3}\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\y+\frac{1}{3}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3-0\\y=0-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y=\frac{-1}{3}\end{cases}}\)
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)
\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)
Từ đó tính được a và b
Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)
Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)
\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)
\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)
Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3
Rồi từ đó tìm được x,y,z
\(\frac{3}{4}\)-\(\frac{-5}{9}\)-\(\frac{11}{36}\)=\(\frac{27}{36}\)-\(\frac{-20}{36}\)-\(\frac{11}{36}\)=1
\(\frac{1}{9}\)+\(\frac{-5}{3}\)-\(\frac{-13}{18}\)=\(\frac{2}{18}\)+\(\frac{-30}{18}\)-\(\frac{-13}{18}\)=\(\frac{-15}{18}\)=\(\frac{-5}{6}\)
\(\frac{3}{4}-\frac{-5}{9}-\frac{11}{36}=\frac{27}{36}-\frac{-20}{36}-\frac{11}{36}=\frac{47}{36}-\frac{11}{36}=\frac{36}{36}=1\)
\(\frac{1}{9}+\frac{-5}{3}-\frac{13}{18}=\frac{2}{18}+\frac{-30}{18}-\frac{13}{18}=\frac{-28}{18}+\frac{13}{18}=\frac{-15}{18}=\frac{-5}{6}\)
quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0
X=0 và X=-1
11111111111111111111111111111111111111111111111111111111111111111111111111111111
<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)
=> x^2+4x+4-x^2-5x-4=x^2+2x
=> -x=x^2+2x
=> x^2+3x=0
=>x*(x+3)=0
thiếu bước nữa nha:
x = 15 . 10 = 150