K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

\(y=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).sinx.cosx\)

\(=\left(cos^2x-sin^2x\right).\dfrac{1}{2}\left(2sinx.cosx\right)=\dfrac{1}{2}cos2x.sin2x\)

\(=\dfrac{1}{4}sin4x\)

Do \(-1\le sin4x\le1\Rightarrow-\dfrac{1}{4}\le y\le\dfrac{1}{4}\)

\(y_{min}=-\dfrac{1}{4}\) khi \(sin4x=1\)

\(y_{max}=\dfrac{1}{4}\) khi \(sin4x=1\)

3 tháng 6 2017

Đáp án B

Đặt Ta có  

Tính được 

17 tháng 12 2019

3 tháng 7 2017

8 tháng 11 2017

Đáp án B

TXĐ:  D = ℝ

29 tháng 1 2017

Chọn A.

Phương pháp:

Chuyển vế, lấy căn bậc bốn hai vế và giải phương trình lượng giác cơ bản.

 

Cách giải: 

cần biết cách kết hợp nghiệm của phương trình lượng giác.

7 tháng 10 2017

11 tháng 4 2017

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Ý bạn là $m\cot 2x$?

Lời giải:

$\frac{\cos 4x+\cos 2x+1}{\sin 4x+\sin 2x}=\frac{\cos ^22x-\sin ^22x+\cos 2x+1}{2\sin 2x\cos 2x+\sin 2x}$
$=\frac{2\cos ^22x-1+\cos 2x+1}{\sin 2x(2\cos 2x+1)}$

$=\frac{2\cos ^22x+\cos 2x}{\sin 2x(2\cos 2x+1)}$

$=\frac{\cos 2x(2\cos 2x+1)}{\sin 2x(2\cos 2x+1)}$

$=\frac{\cos 2x}{\sin 2x}=\cot 2x$

$\Rightarrow m=1$