Tìm độ dài của tập giá trị của hàm số \(y=\sqrt{x-1}+\sqrt{5-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
\(\sqrt{x^2-4x+5}=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\forall x\)
=>\(y=\dfrac{1}{\sqrt{x^2-4x+5}}< =\dfrac{1}{1}=1\forall x\)
Vậy: TGT là \(T=(-\infty;1]\)
\(-1< =sin\left(x-\dfrac{pi}{5}\right)< =1\)
=>\(0< =sin\left(x-\dfrac{pi}{5}\right)+1< =2\)
=>\(0< =\sqrt{1+sin\left(x-\dfrac{pi}{5}\right)}< =\sqrt{2}\)
=>\(-3< =y< =\sqrt{2}-3\)
TGT là \(T=\left[-3;\sqrt{2}-3\right]\)
\(sin\left(x-\dfrac{\pi}{5}\right)\in\left[-1;1\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}\in\left[0;\sqrt{2}\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}-3\in\left[-3;\sqrt{2}-3\right]\)
Vậy \(y\in\left[-3;\sqrt{2}-3\right]\)
Lời giải:
TXĐ: $[0; +\infty)\setminus\left\{4\right\}$
$y=\frac{\sqrt{x}-2}{x-4}=\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{1}{\sqrt{x}+2}$
Ta có:
$\sqrt{x}\geq 0\Rightarrow y\leq \frac{1}{2}$ với mọi $x\in TXĐ$
$\sqrt{x}+2>0$ với mọi $x\in TXĐ$ nên $y>0$ với mọi $x\in TXĐ$
Vậy TGT của hàm số là $(0; \frac{1}{2}]$
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1 \Rightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\; \Rightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\)
\( \Rightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\)
Vây tập giá trị của hàm số \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos x \le 1 \Rightarrow 0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos x} \le \sqrt 2 \;\; \Rightarrow - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\)
Vậy tập giá trị của hàm số \(y = \sqrt {1 + \cos x} - 2\) là \(T = \left[ { - 2;\sqrt 2 - 2} \right]\)
Áp dụng 2 BĐT:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) và \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
\(y\ge\sqrt{x-1+5-x}=2\)
\(y\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)
Độ dài tập giá trị: \(2\sqrt{2}-2\)
Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\sqrt{x-1} + \sqrt{5-x} \leq \sqrt{2(x-1+5-x)} =2\sqrt{2}\)
Áp dụng bất đẳng thức \(\sqrt{A} + \sqrt{B} \geq \sqrt{A+B}\) ta có :
\(y \geq \sqrt{x-1+5-x} = 2\)
Độ dài giá trị của y là \(2\sqrt{2}-2\)