Cho tam giác ABC có M là trung điểm của BC và MA=MB=MC.Tìm trực tâm tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
XétΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A
Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
XétΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A
XétΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A
Ta có M là trung điểm BC và MB = MC = MA (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền BC và = 1/2 BC
Mà cái này chỉ có trong tam giác vuông
=> tam giác ABC vuông tại A
Cho tam giác ABC, M là trung điểm của BC và MA=MB=MC. Chứng minh rằng tam giác ABC là tam giác vuông
A B C M
Ta có: \(\hept{\begin{cases}AM=MB=MC\\MB=\frac{1}{2}BC\left(MB+MC=BC;BM=MC\right)\end{cases}}\)
\(\Rightarrow AM=\frac{1}{2}BC\)
Xét \(\Delta ABC\) có:
\(AM=\frac{1}{2}BC\left(cmt\right)\)
\(\Rightarrow\Delta ABC\)vuông tại \(A\left(đpcm\right)\)