Cho hình vuông ABCD có đỉnh A(-1,0) và 1 đg chéo có pt 2x+y-3=0 .tìm tọa độ điểm C ta có (a,b) khi đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm của hình vuông thì I chính là hình chiếu của C lên BD
Ta có: I ( -1+4t;1-t;-1+t )nên C I → = 4 t - 2 ; 2 - t ; t + 1
Vì C I ⊥ B D nên
C I ⇀ . u B D → = 0 ⇔ 4 4 t - 2 - 2 - t + t + 1 = 0 ⇔ t = 1 2
Do đó: I 1 ; 1 2 ; - 1 2 , C I - 3 2 2
I là trung điểm AC ⇒ A ( 1;2;3 )
Tọa độ điểm B - 1 + 4 t ; 1 - t ; - 1 + t với t > 1 4
Ta có IB = IC nên
- 2 + 4 t 2 + 1 2 - t 2 + 1 2 + t 2 = 9 2 ⇔ t 2 - t = 0 ⇔ t = 0 t = 1
Tọa độ điểm B ( 3;0;0 ). Suy ra d ( -1;1;-1 )
Đáp án D
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
Đặt \(d:2x+y-3=0\)
Thấy \(A\notin d\)
\(\Rightarrow\) Đường chéo đó là BD và có pt BD:2x+y-3=0
Gọi \(H=AC\cap BD\)
\(\Rightarrow AH\perp BD\) và H là trung điểm của AC
Có \(AH\left\{{}\begin{matrix}quaA\left(-1;0\right)\\\perp BD\Rightarrow vtpt\overrightarrow{n}\left(-1;2\right)\end{matrix}\right.\)
\(\Rightarrow AH:-x+2y-1=0\)
Tọa độ của H là nghiệm của hệ pt:\(\left\{{}\begin{matrix}2x+y-3=0\\-x+2y-1=0\end{matrix}\right.\)\(\Rightarrow H\left(1;1\right)\)
Có H là tđ của AC
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_H-x_A=3\\y_C=2y_H-y_A=2\end{matrix}\right.\)
\(\Rightarrow C\left(3;2\right)\)