A=1/3-3/4-(-3/5)+1/72-2/9-1/36+1/15=.................?
co like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/3 - 3/4 + 3/5 + 1/72 -2/9 -1/36 +1 /15
A = (1/3 + 3/5 +1/15 ) - ( 3/4 + 2/9 +1/36 ) +1/72
A = 1 - 1 +1/ 72 = 1/72
Dúng nha **** đi
\(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(=\left\{\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right\}\)\(-\left\{\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right\}\)\(+\frac{1}{72}\)
\(=1-1+1+\frac{1}{72}\)
\(=\frac{1}{72}\)
Bạn nhờ mik giúp thì phải nhớ tíck mik đó
A=1/3-3/4-(-3/5)+1/72-2/9-1/36+1/15
A=(1/3+3/5+1/15)-(3/4+2/9+1/36)+1/72
A=1-1+1+1/72=1/72
k mình nha
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
\(\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(=\left(\frac{1}{3}-\frac{2}{9}\right)+\left(-\frac{3}{4}-\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{72}\)
\(=\left(\frac{3}{9}-\frac{2}{9}\right)+\left(-\frac{27}{36}-\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{72}\)
\(=\frac{1}{9}+\frac{-7}{9}+\frac{2}{3}+\frac{1}{72}\)
\(=-\frac{2}{3}+\frac{2}{3}+\frac{1}{72}\)
\(=0+\frac{1}{72}=\frac{1}{72}\)
Ta có :
\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\frac{5}{15}-\frac{54}{72}+\frac{9}{15}+\frac{1}{72}-\frac{16}{72}-\frac{1}{72}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(-\frac{54}{72}+\frac{1}{72}-\frac{16}{72}-\frac{2}{72}\right)\)
\(\Rightarrow A=1-\frac{71}{72}=\frac{1}{72}\)