TÌM MỘT SỐ CÓ 2 CHỮ SỐ BIẾT RẰNG CHỮ SỐ HÀNG CHỤC LỚN HƠN CHỮ SỐ HÀNG ĐƠN VỊ LÀ 5 . NẾU VIẾT SỐ ĐÓ THEO THỨ TỰ NGƯỢC LẠI TA ĐC SỐ MỚI MÀ TỔNG CỦA NÓ VỚI SỐ BAN ĐẦU LÀ 121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2
=> PT : 2a - 3b = 2 (1)
Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị
=> PT : \(\overline{ab}-\overline{ba}=18\)
<=> a - b = 2 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)
Vậy số cần tìm là 42
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
- Gọi hai chữ số càn tìm là : \(\overline{xy}\left(x,y\in N,0\le x,y< 10\right)\)
Ta có : Số đó gấp 4 lần tổng các chữ số của nó .
=> 10x + y = 4 ( x + y )
=> 10x + y - 4x - 4y = 6x - 3y = 0 ( I )
Lại có : Nếu viết hai chữ số của nó theo thứ tự ngược lại thì đc số mới lớn hơn số ban đầu 36 đơn vị .
=> \(\overline{xy}+36=\overline{yx}\)
=> 10x + y + 36 = 10y + x
=> 9y - 9x = 36 ( II )
- Kết hợp ( I ) và ( II ) ta được hệ phương tình : Giai ( I ) và ( II ) ta được :
\(\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy chữ số cần tìm là 48 .
làm sao để viết có dấu gạch ngang trên đầu vậy bạn?
Ta có: 121-38=83
=> 38+83=121