K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

⇔m2x−mx−2x+m−2=0

⇔m2x−4x−mx+2x+m−2=0

⇔x(m−2)(m+2)−x(m−2)+(m−2)=0

⇔(mx+2x−x+1)(m−2)=0

⇔((m+1)x+1)(m−2)=0

⇒[x=−1m+1  m=2thì TM mọi x thuôộc R

     m=2

23 tháng 7 2021

Cảm ơn bạn

 

10 tháng 2 2018

\(mx^2-2=4x+m\)

\(\Leftrightarrow mx^2-4x=m+2\)

\(\Leftrightarrow x.\left(mx-4\right)=m+2\)

nếu \(mx-4\ne0\Leftrightarrow m\ne\frac{4}{x}\)\(\Leftrightarrow x\ne\pm1\) thì phương trình trên có 1 nghiệm duy nhất 

\(x=\frac{m+2}{mx-4}\)

vậy khi \(m\ne\frac{4}{x}\)  thì phương trình đã cho có nghiệm duy nhất  \(x=\frac{m+2}{mx-4}\)

+) nếu \(m=\frac{4}{x}\) thì phương trình có dạng  \(0x=m+2\) ( pt này có vô số nghiệm )

vậy khi \(m=\frac{4}{x}\)thì pt đã cho có vô số nghiệm

nghiệm tổng quát của phương trình là \(x\in R\)

10 tháng 2 2018

Tham khảo bài này :

 4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất 
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha? 
1> PT<=> (m^2+1)x -2m+3=0 
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m ) 
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1) 
2> PT có dạng : -m^2 - 3m = -2m + 6 
<=> -m^2 - m -6 =0 
vô nghiệm với mọi giá trị của m 
=> PT đã cho luôn vô nghiệm với mọi giá trị của m 
3> PT <=> (m-1)x -m^2-m+2 = 0 
TH1 : m-1# 0 <=> m # 1 
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2 
TH2 : m-1=0 <=> m = 1 
thì PT có dạng : 0x+0 = 0 
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý ) 
Kết luận : 
Với m # 1 : PT có nghiệm duy nhất x = m+2 
Với m=1 : PT có vô số nghiệm 
4> (m^2-3m+2)x -m^2+m = 0 
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2 
- Nếu m=1 thì PT có dạng : 0x+0=0 
=> PT có vô số nghiệm 
- Nếu m=2 thì PT có dạng : 0x-2=0 
=> PT vô nghiệm 
TH2 : m^2-3m+2 # <=> m # 1 và m # 2 
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2) 
Kết luận : 
Với m=1 : PT có vô số nghiệm 
Với m=2 :PT vô nghiệm 
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2) 
 

19 tháng 2 2022

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

a: Để đây là phương trình bậc nhất một ẩn thì m+3<>0

hay m<>-3

b: Để đây là phươg trình bậc nhất một ẩn thì m<>0

17 tháng 1 2022

\(4x+mx=3m^2+1\Leftrightarrow x\left(m+4\right)-3m^2-1=0\)

Để pt trên là pt bậc nhất khi \(m+4\ne0\Leftrightarrow m\ne-4\)

9 tháng 12 2021

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

13 tháng 5 2020

\(m^2x=m\cdot\left(x+2\right)-2\)

\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)

*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)

=> Với m =1 thì pt thỏa mãn với mọi x thuộc R

*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)

=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)

Vậy ....