K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

P= n.(4-n) de p la so nguyen to 

Ta co: n.(4-n) co uoc la 1

Đê h trên la sô nguyên tô thi n=1

+)  Vơi n=1 thi n.(n-4)= 3 la sô nguyên tô

+)  Vơi 4-n= 1→ n = 3thi n.(4-n)=3 la sô nguyên tô

Vây P la sô nguyên tô khi n=1 hoăc n =3

°○☆○°

Đung nhơ k cho tơ đây Phương ♧☆♡

28 tháng 12 2017

Dong thư 3 mk viêt  nhâm

Đê "h" chư k phai la "h"

nha

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

9 tháng 1 2024

ai giúp mình với

28 tháng 6 2021

Bạn có đọc kĩ bài ko vậy

DD
30 tháng 3 2021

Nếu \(n=1\)hiển nhiên ta có đpcm.

Nếu \(n>1\)

Có \(mn⋮n\)mà \(4⋮̸n\)(do \(n\)lẻ) nên \(\left(n,mn+4\right)=1\).

NV
9 tháng 1 2024

a.

Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ

TH1: p chẵn và q lẻ \(\Rightarrow p=2\)

Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố

- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)

- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)

Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)

TH2: p lẻ và q chẵn \(\Rightarrow q=2\)

Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố

- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)

- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)

Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu

NV
9 tháng 1 2024

b.

x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)

Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)

\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)

Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên

\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên

\(\Rightarrow x+4=Ư\left(32\right)\)

Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)

\(\Rightarrow x=\left\{0;4;12;28\right\}\)

Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)

- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)

- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)

- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)

Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)