Tính :
A = 1.2 + 2.3 +3.4 + ... + 99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
nguồn:câu hỏi tương tự
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
A = 1.2 + 2.3 + 3.4 + .. + 99.100
<=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.( 5 -2) +...+ 99.100.(101-98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ..- 98.99.100 + 99.100.101
= 999900
<=> A = 999900 : 3 = 333300
A=1.2+2.3+3.4+...+99.100
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4+3.4.5+...+98.99.100+99.100.101 - 0.1.2-1.2.3-2.3.4-3.4.5-...-98.99.100
3A=99.100.101-0.1.2
3A=999900-0
3A=999900
A=999900:3
A=333300
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
3A=1.2.3+2.3.(4-1)+.............+98.99.(100-97)+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+...........+98.99.100-97.98.99+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 98.99.3 + 99.100.3
=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + 98.99.( 100 - 97 ) + 99.100.( 101 - 98 )
=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = ( 1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ..... + 98.99.100 )
=> 3A = 99.100.101 - 0.1.2
=> 3A = 99.100.101
=> A = 33.100.101
=> A = 333300
\(\text{Ta có: A = 1.2+2.3+3.4+4.5+...+99.100 }\)
=> 3A = 3.(1.2+2.3+3.4+4.5+...+99.100)
=> 3A = 1.2.(3 - 0) +2.3.(4 - 1) + 3.4.(5-2) + ........ + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .......... + 99.100.101
=> 3A = 99.100.101
\(\Rightarrow A=\frac{99.100.101}{3}=333300\)
k mình nếu đúng OK
Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3﴾4‐1﴿+3.4﴾5‐2﴿+...+98.99﴾100‐97﴿+99.100﴾101‐98﴿
3A= 1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+...‐97.98.99+99.100.101‐98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
Áp dụng công thức ta có :
\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-1) +... + 99.100.(101-98)
3A = 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4 +...+ 99.100.101 - 98.99.100
tiếp theo nek : 3A = 99.100.101 - 0.1.2 ( rút gọn nhưng tích giống nhau với nhau)
còn lại bạn tự tính nhé
Đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300