Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:
a/ AE.AC = AF.AB
b/ △AFE∼△ACB
c/ △FHE∼△BHC
d/ BF.BA+CF.CA=BC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AC\cdot AE\)
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BH\cdot BE\)
a) xét \(\Delta ACF\) và \(\Delta ABE\)
\(\widehat{BAC}\left(chung\right)\)
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\Rightarrow\Delta ACF\) đồng dạng \(\Delta ABE\)
\(\Rightarrow\frac{AC}{AF}=\frac{AB}{AE}\)
\(\Rightarrow AC\cdot AE=AF\cdot AB\left(dpcm\right)\)
b) Theo cmt: \(\Delta ACF\text{đồng dạng}\Delta ABE\)
\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\)
xét \(\Delta AFE\)và\(\Delta ACB\)
\(\widehat{BAC}\left(chung\right)\)
\(\frac{AE}{AF}=\frac{AB}{AC}\) (cmt)
\(\Rightarrow\)\(\Delta AFE\)đồng dạng \(\Delta ACB\)(dpcm)
+) Câu d sửa đề thành BF . BA + CE . CA = BC2
a, Xét △AFH vuông tại F và △ADB vuông tại D
Có: FAH là góc chung
=> △AFH ᔕ △ADB (g.g)
b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)
Xét △ABH và △ADF
Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)
BAH là góc chung
=> △ABH ᔕ △ADF (c.g.c)
c, Xét △HFB vuông tại F và △HEC vuông tại E
Có: FHB = EHC (2 góc đối đỉnh)
=> △HFB ᔕ △HEC (g.g)
\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)
=> HF . HC = HE . HB
d, Sửa đề thành BF . BA + CE . CA = BC2
Xét △HEC vuông tại E và △AFC vuông tại F
Có: HCE là góc chung
=> △HEC ᔕ △AFC (g.g)
\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)
=> FC . HC = EC . AC (1)
Xét △HFB vuông tại F và △AEB vuông tại E
Có: FBH là góc chung
=> △HFB ᔕ △AEB (g.g)
\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)
=> FB . AB = EB . HB (2)
Xét △BFC vuông tại F và △HDC vuông tại D
Có: HCD là góc chung
=> △BFC ᔕ △HDC (g.g)
\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)
=> FC . HC = BC . DC (3)
Xét △BEC vuông tại E và △BDH vuông tại D
Có: HBD là góc chung
=> △BEC ᔕ △BDH (g.g)
\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)
=> BC . DB = BE . BH (4)
Từ (1) và (3) => EC . AC = BC . DC
Từ (2) và (4) => FB . AB = BC . DB
Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2
1: Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồg dạng vớiΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF; AE/Ab=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA
a: Xét ΔAEB vuông tạiE và ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB đồg dạng với ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC và \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAFE và ΔACB có
AE/AB=AF/AC
góc FAE chung
Do đo: ΔAFE đồng dạng với ΔACB
c: Xét ΔHBF vuông tại F và ΔhCE vuông tại E có
góc BHF=góc CHE
Do đo: ΔHBF đồng dạng với ΔHCE
Suy ra: HB/HC=HF/HE
hay HB/HF=HC/HE
Xét ΔHBC và ΔHFE có
HB/HF=HC/HE
góc BHC=góc FHE
Do đo;ΔHBC đồng dạng với ΔHFE