Cho đa thức f(x) = ax2 = bx + c và f(3) = f(-3). Khi đó giá trị của hệ số b là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)
\(\dfrac{1}{2}f\left(2\right)=-2\)
\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)
\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)
\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)
\(\Rightarrow a=-2\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).
b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow h\left(x\right)=-13x^2-10\)
\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)
\(h\left(x\right)=-23\Leftrightarrow x=0\)
-Vậy \(h\left(x\right)_{max}=-23\)
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)
\(F\left(x\right)-F\left(x-1\right)=x\)
\(\Leftrightarrow ax^2+bx-a\left(x-1\right)^2-b\left(x-1\right)=x\)
\(\Leftrightarrow2ax-a+b=x\)
Đồng nhất hệ số 2 vế:
\(\Rightarrow\left\{{}\begin{matrix}2a=1\\-a+b=0\end{matrix}\right.\) \(\Rightarrow a=b=\dfrac{1}{2}\)
Ta có : a + c = b + 2018
b = a + c - 2018
f(-1) = a . ( -1 )2 + b . ( -1 ) + c = a - b + c = a - ( a + c - 2018 ) + c = a - a - c + 2018 + c = 2018
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
Ta có f(3) = a.32 + 3b + c
= 9a + 3b + c
f(-3) = a.(-3)2 + (-3b) + c
= 9a - 3b + c
Lại có f(3) = f(-3)
=> 9a + 3b +c = 9a - 3b + c
=> 9a + 3b + c - (9a - 3b + c) = 0
<=> 6b = 0
<=> b =0
Vậy giá trị của hệ số b là 0