K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

Bài làm:

Gọi O là giao điểm của AB và CD

Ta có Ô1 + Ô2 + Ô3 + Ô4 = 360 độ

⇒⇒ Ô4 = 360 độ - (Ô1 + Ô2 + Ô3) = 360 độ - 250 độ = 110 độ

Vì Ô2 = Ô4 (đối đỉnh) nên Ô2 = 110 độ

Ta có Ô1 + Ô2 = 180 độ (kề bù)

⇒⇒ Ô1 = 180 độ - Ô2 = 180 độ - 110 độ = 70 độ

Vì Ô1 = Ô3 (đối đỉnh) nên Ô3 = 70 độ

Đáp số : ........

12 tháng 8 2021

không bít

21 tháng 9 2021

                     Bn tự vẽ hình nha!

Gọi O là giao điểm của AB và CD

Ta có Ô1 + Ô2 + Ô3 + Ô4 = 360 độ

 Ô4 = 360 độ - (Ô1 + Ô2 + Ô3) = 360 độ - 250 độ = 110 độ

Vì Ô2 = Ô4 (đối đỉnh) nên Ô2 = 110 độ

Ta có Ô1 + Ô2 = 180 độ (kề bù)

 Ô1 = 180 độ - Ô2 = 180 độ - 110 độ = 70 độ

Vì Ô1 = Ô3 (đối đỉnh) nên Ô3 = 70 độ

Số đo của bốn góc là \(110^0;110^0;70^0;70^0\)

20 tháng 7 2022

làm thế nào vậy bạn

24 tháng 11 2023

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

16 tháng 9 2020

Bài 1 :                                                             Bài giải

A B C D O

Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)

\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\) 

                                                                                                                        \(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)

\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)

16 tháng 9 2020

Bài 2 :                                                Bài giải

N P Q M O

Ta có: 

\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )

\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )

Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)

Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)

                                            \(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)

                                                                                        \(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)

\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)

\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)

Tổng số đo của bốn góc là 360 độ

24 tháng 8 2019

Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

24 tháng 8 2019

Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!