làm hộ mk bài nay vs: cho 2 số a,b ko âm , chứng minh:
a, nếu a<b thì \(\sqrt{a}<\sqrt{b}\)
b, Nếu \(\sqrt{a}<\sqrt{b}\) thì a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21 = 7 . 3
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
=>A chia hết cho 7
Vì A cùng chia hết cho 7 ; 3 đồng nghĩa với A chia hết cho 21 .
GIẢI HỘ MK VS, MK LÀM KO RA
cho các số thực dương a,b,c thỏa mãn a+b+c=3
CMR: a+ab+2abc \(\leq \) 9/2
\(a+b+c=3\Rightarrow b=3-a-c\)
\(\Leftrightarrow a+a\left(3-a-c\right)+2ac\left(3-a-c\right)\le\frac{9}{2}\)
\(\Leftrightarrow f\left(a\right)=\left(2c+1\right)a^2+\left(2c^2-5c-4\right)a-\frac{9}{2}\ge0\)
thấy f(a) là một tam thức bậc 2 của a có hệ số a2>=0 và lại có
\(\Delta=\left(2c^2-5c-4\right)^2-48\left(2c+1\right)=\left(2c-1\right)^2\left(c^2-4c-2\right)\le0\)
đúng do 0=<c=<3
=> f(a) >=0
dấu "=" xảy ra khi \(a=\frac{3}{2};b=1;c=\frac{1}{2}\)
a)Y là số dương khi a-1 là số dương
b)Y là số âm khi a-1 là số dương
c)Y ko là số âm, ko là số dương
=>Y=0
=>a-1=0
=>a=0+1=1
Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
\(\overline{X}=\frac{x_1.n_1+x_2.n_2+...+x_k.n_k}{N}\)
Số trung bình cộng sau khi cộng thêm a là:
\(\overline{X'}=\frac{\left(x_1+a\right).n_1+\left(x_2+a\right).n_2+...+\left(x_k+a\right).n_k}{N}\)
\(\overline{X'}=\frac{\left(x_1.n_1+x_2.n_2+...+x_k.n_k\right)+a.\left(n_1+n_2+...+n_k\right)}{N}\)
\(=\frac{\left(x_1.n_1+x_2.n_2+...+x_k.n_k\right)}{N}+\frac{a.N}{N}\)
(Vì tổng các tần số \(n_1+n_2+...+n_k=N\))
Nên \(\overline{X'}=\overline{X}+a\)
Vậy số trung bình cộng cũng được cộng thêm với số đó
=> ĐPCM
câu 21 b
câu 22 d 23b 24c 15a 16b 17=9kWh 3c 4d chúc bạn thi tốt vào lần sau
Nếu a<b thì a-b<0 ,suy ra \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)0\)với mọi a khác b nên suy ra \(\left(\sqrt{a}-\sqrt{b}\right)