tìm [x] biết:
x- \(\dfrac{8}{5}\) < -6 < x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{8}{5}< -6\\-6< x\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x< -6+\dfrac{8}{5}\\x>-6\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x< -\dfrac{22}{5}\\x>-6\end{matrix}\right.\\ \Rightarrow-6< x< -\dfrac{22}{5}\)
X + 1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X+ (-15) = 17
X = 17-(-15)
X = 32
vậy x = 32
tk nha
`x-(5/6 -x) =x-2/3`
`x-5/6 +x -x+2/3 =0`
`x = 5/6-2/3 = 5/6 -4/6 = 1/6`
\(...\Rightarrow x+x+\dfrac{x}{43}+\dfrac{x}{8}=14+148+\dfrac{10}{30}+\dfrac{5}{95}\)
\(\Rightarrow\left(1+1+\dfrac{1}{43}+\dfrac{1}{8}\right)x=162+\dfrac{1}{3}+\dfrac{1}{19}\)
\(\Rightarrow\left(\dfrac{2.43.8}{43.8}+\dfrac{1.8}{43.8}+\dfrac{1.43}{43.8}\right)x=\dfrac{162.3.19}{3.19}+\dfrac{1.19}{3.19}+\dfrac{1.3}{19.3}\)
\(\Rightarrow\left(\dfrac{688}{344}+\dfrac{8}{344}+\dfrac{43}{344}\right)x=\dfrac{9234}{57}+\dfrac{19}{57}+\dfrac{3}{57}\)
\(\Rightarrow\dfrac{739}{344}x=\dfrac{9256}{57}\)
\(\Rightarrow x=\dfrac{9256}{57}:\dfrac{739}{344}=\dfrac{9256}{57}.\dfrac{344}{739}=\dfrac{\text{3184064}}{\text{42123}}\)
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
a,2/5 = 2/5 ; 3/8=6/16 ; 1/9=3/27
b, 4/3=8/6 ; -1=-1 ; -4/-2=-8/4
tick cho mik nhé
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
Ta có :
\(x-\dfrac{8}{5}< -6\\ \Rightarrow x< -6+\dfrac{8}{5}\\ \Rightarrow x< -\dfrac{22}{5}=-4\dfrac{2}{5}\\ \Rightarrow-6< x< -1\dfrac{2}{5}\\ \Rightarrow x=-5\)
Vậy...
ở dòng -6<x<-1\(\dfrac{2}{5}\) thì số -1\(\dfrac{2}{5}\) lấy đâu ra thế bạn