K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD

12 tháng 2 2020

Bạn tự vẽ hình nhé

 a, Xét tam giác AOC và tam giác BOC có;

OA=OB ( giả thiết )

góc AOC = góc BOC ( giả thiết )

OC cạnh chung

=> tam giác AOC = tam giác BOC  ( C . G .C )

=> AC = BC ( 2 cạnh tương ứng )

Do đó tam giác ACB cân tại C

b, Xét tam giác AOD và tam giác BOD có ;

OA = OB ( giả thiết )

Góc AOc = góc BOC ( giả thiết )

OD cạnh chung

=> tam giác AOD = tam giác BOD ( c.g.c )

=> góc ADO = góc BDO ( 2 góc tương ứng )

Ta có ; góc ADO + góc BDO = 180 độ ( 2 góc kề bù )

=> góc ADO = góc BDO = 180 độ : 2

=> Góc ADO = góc BDO = 90 độ