Cho hình bình hành ABCD có BC=2ab góc A=60 độ.gọi E,F lần lượt là trung điểm BC và AD A , chứng minh AE song song BF B, Tứ giác CDEF,ABED là hình j ? Vì sao C gọi M là điểm đối xứng với A qua B. chứng minh tứ giác BMCD là HCN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ECDF có
DF//EC
DF=EC
Do đó: ECDF là hình bình hành
mà DF=DC
nên ECDF là hình thoi
a) tứ giác ABEF là hình thoi
=>đpcm
b) theo câu a
c)Hình thoi
d)Tam giác ABD có
AB=1/2AD và BAD =60
=>tam giác ABD là nữa tam giác đều
=>ABD=90
=>MBD=90
Mặt khác BM=AB=CD
BM song song với CD
=>đpcm
e) vì E là trung điểm của BC
và từ giác MBDC là hình chữ nhật
=>E là giao điểm của MD và BC
=>đpcm
a, Ta có do: AD=2AB mà AD=2AF nên AF=AB
Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF
suy ra AFEB là hình thoi suy ra \(AE\perp BF\)
b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)
Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)
mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)
Từ (1) và (2) suy ra FDCB là hình thang cân.
c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành
lại có:
BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật
a) Sửa đề: Cm AE//CF
Ta có: \(AF=FB=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(ABCD là hình bình hành)
nên AF=FB=BE=EC
Xét tứ giác AFCE có
AF//CE(gt)
AF=CE(cmt)
Do đó: AFCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AE//CF(Hai cạnh đối của hình bình hành AFCE)
b) Xét tứ giác CDFE có
DF=FE=EC=DC(\(=\dfrac{1}{2}BC\))
nên CDFE là hình thoi(Dấu hiệu nhận biết hình thoi)
c) Xét tứ giác BMCD có
BM//CD(gt)
BM=CD(=AB)
Do đó: BMCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)