K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

\(=\frac{19999999}{5x19999999}=\frac{1}{5}\)

19 tháng 8 2015

CR7 LAM SAI MA CUNG DUOC ****

9 tháng 7 2016

   Đặt \(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)

Ta có:\(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\frac{a}{a+1}-\frac{a^2}{1+a^2}.\frac{1}{a^2+a}\)

          \(A=\frac{a^2}{a^2-1}-\frac{a^3}{a+a^3+a^2+1}-\frac{a^2}{a+a^2+a^3+a^4}\)

a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)

\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)

\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)

\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)

b: Để A=3 thì \(3a^2-3=a\)

\(\Leftrightarrow2a^2=3\)

hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)

6 tháng 7 2016

Gọi phân số phải tìm là : \(\frac{3.x}{7.x}\)  ( n \(\in\) N ; n khác 0 )

Mặt khác : 3x + 7x = 10x

              => 10x = 1100

              => x = 1100 : 10

              => 110

Vậy phân số phải tìm là : \(\frac{3.x}{7.x}=\frac{3.110}{7.110}=\frac{330}{770}\)

6 tháng 7 2016

330/770

5 tháng 11 2015

Cả tử số và mẫu số đều là số có hai chữ số

+) Trên tử: chữ số hàng chục nhỏ hơn chữ số hàng đơn vị

+) Dưới mẫu: chữ số hàng chục lớn hơn chữ số hàng đơn vị

16 tháng 2 2017

=2 nha bạn :)

16 tháng 2 2017

=2 nhé

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{101}}\)

\(\Rightarrow A=\frac{2^{101}-1}{2^{101}}\)

18 tháng 4 2019

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{\left(1.2.3....29\right)\left(3.4.5....31\right)}{\left(2.3.4....30\right)\left(2.3.4....30\right)}=\frac{31}{30.2}=\frac{31}{60}\)

15 tháng 11 2018

\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}\)

\(=\frac{\frac{x-y}{\left(x-y\right)\left(x+y\right)}}{\frac{y+x}{\left(x-y\right)\left(x+y\right)}}\)

\(=\frac{x-y}{x+y}\)

Tham khảo nhé~