K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2015

P = xy. (x+ y- 2xy) = xy.(2 - xy) = -2(xy)+ 2xy

Xét P - 2 = -2. (xy)2 + 2xy - 2 = -2. [(xy)2 - xy + 1]

Mà (xy)- xy + 1 = (xy - \(\frac{1}{2}\))\(\frac{3}{4}\) > 0 với mọi x; y

=> -2.  [(xy)2 - xy + 1] < 0 với mọi x; y => P - 2 < 0 với mọi x; y thỏa mãn y/c

=> P < 2 

Dấu "=" không xảy ra

24 tháng 7 2019

Ta có: \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2xy\) 

Mặt khác: \(\frac{\left(x+y\right)^2}{4}\ge xy\) 

\(\Rightarrow1\ge xy\) (thay x+y=2) và \(2\ge2xy\)

Ta có: \(xy\left(x^2+y^2\right)=xy\left(4-2xy\right)\)  

=>.....

10 tháng 3 2021

Đặt xy = a.

Ta có \(xy.\left(x^2+y^2\right)=xy.\left[\left(x+y\right)^2-2xy\right]=t\left(4-2t\right)=4t-2t^2=2-2\left(t-1\right)^2\le2\).

Đẳng thức xảy ra khi x = y = 1.

23 tháng 1 2021

\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)

7 tháng 8 2021

\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)

Sửa lại đề câu 2 !!

18 tháng 11 2017

\(M=\dfrac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{xyz-x^3+xyz-y^3+xyz-z^3}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

\(=\dfrac{-\left(x^3+y^3+z^3-3xyz\right)}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)

\(=\dfrac{-\left(x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left[\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\right]}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left\{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\right\}}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\dfrac{-x-y-z}{2}\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

\(\left\{\begin{matrix} x+y\leq 2\\ x^2+xy+y^2=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (x+y)^2\leq 4\\ x^2+xy+y^2=3\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-(x^2+xy+y^2)\leq 1\Leftrightarrow xy\leq 1\)

Do đó:

\(t=x^2+y^2-xy=(x^2+y^2+xy)-2xy=3-2xy\geq 3-2.1=1\)

Mặt khác:

\(\frac{x^2-xy+y^2}{x^2+xy+y^2}=\frac{x^2+xy+y^2-2xy}{x^2+y^2+xy}=1-\frac{2xy}{x^2+xy+y^2}=3-(2+\frac{2xy}{x^2+xy+y^2})\)

\(=3-\frac{2(x+y)^2}{x^2+xy+y^2}=3-\frac{2(x+y)^2}{3}\leq 3\)

\(\Rightarrow t= x^2-xy+y^2\leq 3(x^2+xy+y^2)=3.3=9\)

Vậy \(t_{\min}=1\Leftrightarrow x=y=1\)

\(t_{\max}=9\Leftrightarrow (x,y)=(\sqrt{3}; -\sqrt{3})\)và hoán vị

16 tháng 9 2017

@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))