a,Tìm số tự nhiên có ba chữ số ,biết rằng nếu xóa chữ số hàng trăm thì số ấy giảm 9 lần.
b, Giải bài toán trên nếu không cho biết chữ số bị xóa thuộc hàng nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Nếu không biết chữ số bị xóa => chữ số bị xóa có thể là hàng trăm ; chục , đơn vị
+) Chữ số bị xóa là hàng trăm : câu a đã làm
+) chữ số bị xóa ở hàng chục:
theo bài cho abc = 9. ac
=> 100a + 10b + c = 90a + 9c
=> 10a + 10b = 8c => 5a + 5b = 4c => 4c chia hết cho 5 => c = 0 hoặc c = 5
c = 0 => a+ b = 0 Loại
c = 5 => a + b = 4 => a = 1; b = 3 hoặc a = 2 ; b = 2 hoặc a = 3; b = 1 hoặc a =4 ; b = 0
Vậy....
+) Nếu chữ số bị xóa ở hàng đơn vị:
abc = 9ab => 100a + 10b + c = 90a + 9b => 10a + b + c = 0 . Không xảy ra
Vậy không có số nào thỏa mãn
a) Gọi số cần tìm là abc.
Theo bài ra ta có: abc=bc.9
=>a.100+bc=bc.9
=>a.100=bc.9-bc
=>a.100=bc.8
=>a.25=bc.2
=>a.25 chia hết cho 2
mà (25,2)=1
=>a chia hết cho 2
Vì bc<100
=>bc.2<200
=>a.25<200
=>a<8
=>0<a<8
=>a=(1,2,3,4,5,6,7)
Vì a chia hết cho 2
=>a=2,4,6
Xét a=2=>a.25=50=bc.2=>bc=25=>abc=225
Xét a=4=>a.25=100=bc.2=>bc=50=>abc=450
Xét a=6=>a.25=150=bc.2=>bc=75=>abc=675
Vậy số cần tìm là 225,450,675
a) Gọi số có 3 chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 9 . bc
100a + 10b + c = 9 . (10b + c)
100a + 10b + c = 90b + 9c
100a = 80b + 8c (Trừ cả hai vế của dòng trên đi 10b và c)
50a = 40b + 4c (Chia cả hai vế của dòng trên cho 2)
50a = 4 (10b + c) (*)
=> 50a phải chia hết cho 4 => a phải chia hết cho 4 (vì số 50 không chia hết cho 4 nên thừa số a phải chia hết cho 4 để tích 50a chia hết cho 4)
=> a = {0; 4; 8; 12; 16}
Trường hợp 1 : a = 0 (loại vì số abc trở thành số có 2 chữ số)
Trường hợp 2: a = 4, thay vào (*) => 50 . 4 = 4 . (10b + c)
=> 10b + c = 50 => b và c là thương của phép chia 50 chia cho 10
Ta có: 50 chia cho 10 bằng 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 450
Trường hợp 3: a = 8, thay vào (*) => 50 . 8 = 4 . (10b + c)
=> 10b + c = 100 => b và c là thương của phép chia 100 chia cho 10
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 100
Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a = 12, thay vào (*) => 50 . 12 = 4 . (10b + c)
=> 10b + c = 150 => b và c là thương của phép chia 200 chia cho 10)
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 150
Không có chữ số b và c nào thỏa mãn 10b + c = 150
Trường hợp 5: a = 16, thay vào (*) => 50 . 16 = 4 . (10b + c)
=> 10b + c = 200 => b và c là thương của phép chia 200 chia cho 10)
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 200
Không có chữ số b và c nào thỏa mãn 10b + c = 200
Kết luận: Số tìm được là 450.
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
bc.9 = abc
=> bc.9 = 100a + bc
=> bc.9 - bc = 100a
=> bc.8 = 100a
=> bc.2 = 25a (1)
⇒bc.2⋮25⇒bc.2⋮25
Mà (2;25)=1 ⇒bc⋮25⇒bc⋮25
⇒bc∈{25;50;75}⇒bc∈{25;50;75}
+ Với bc = 25, thay vào (1) => a = 25.2:25 = 2
+ Với bc = 50, thay vào (1) => a = 50.2:25 = 4
+ Với bc = 75, thay vào (1) => a = 75.2:25 = 6
Vậy số cần tìm là 225; 450; 675
Gọi số đó là : abc(a khác 0,a,b,c < 10)
Ta có:
abc = bc x 7
a x 100 + bc = bc x 6 + bc
a x 100 = bc x 6
a x 50 = bc x 3
a x 50 chia hết cho 50 nên bc x 3 chia hết cho 50 nên bc = 50(bc khác 0)
bc = 50 thì
a x 50 = 50 x 3 nên a = 3
suy ra abc = 350
thử:
350 = 50 x 7 ( đúng )
Đ/S : 350
Bạn tự gạch số nhé
__________________
1/ Ta có a6bc=13.abc
1000a+600+10b+c=1300a+130b+13c
600=300a+120b+12c
12.50=12(25a+10b+c)
50=25a+bc. Vì 50 chia hết 25, a chia hết 25 => bc chia hết 25 => c=5.
50=25a+10b+5
9=5a+2b. => a=1 thì 9=5+2b => b=2, a>=2 thì 2b<0 => b<0 vô lí.
Vậy abc=125
Bài 2 : Nếu xóa đi chữ số hàng nghìn thì được số mới kém số cũ 1000 đơn vị.
Ta có sơ đồ:
Số cũ: l-----l-----l-----l-----l-----l-----l-----l-----l-----l
1000 đơn vị( 8 phần )
Số mới:l-----l
Số cần tìm ( số cũ ) là : 1000 : ( 9 - 1 ) x 9 = 1125
( bài 1 bạn xem lại đề )
abc là số phải tìm abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp: (1)
Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2 Vậy a = 2, b = 5, c = 0
Số phải tìm là 250 (2)
Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là: 250, 125, 375
Ta có ab x 9 = abc
=> ab x 9 = ab x 10 + c
=> ab = c
=> không tồn tại số đó vì c là chữ số.
xóa đi 9 ở hàng trăm là bớt đi 9 trăm. 9 trăm là 8/9 của số tự nhiên kia.
Gọi số cần tìm là a0cd,
xóa số 0 thì ta được acd
Ta có: acd . 9 = a0cd
=> (100a + cd) . 9 = 1000a + cd
=> 900a + 9.cd = 1000a + cd
=> 8 . cd = 100a
=> 8.cd bé hơn hoặc bằng 900
=> 100.a bé hơn hoặc bằng 900
100.a có thể bằng 100; 200; 300;...; 900
Xét các trường hợp:
+) 100 : 8 = 12 (dư 4) (loại)
+) 200:8 = 25; 2025 : 9 = 225 (chọn)
... (mình không ghi vì hơi dài bạn tự viết nhé)
+) 900 : 8 (dư 4) (loại)
Vậy số đó có thể là các số 2025; 4050; 6075
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
a) Gọi số cần tìm là : abc
abc = 9.bc \(\Rightarrow\) 100a + bc = 9.abc
Ta có : 8.bc = 100a \(\Rightarrow\)2.bc = 25a
Như vậy : bc chai hết cho 25.
Vậy ta có 3 đáp số : 225; 450; 675.
b) Nếu xóa đi chữ số tận cùng thì : Số sẽ giảm từ 10 lần trở lên.
Nếu xóa chữ số hàng chục thì : Có 4 đáp số là : 135; 225; 315; 405.
Nếu xóa chữ số hàng trem8 thì : Có 4 đáp số là : 225; 450; 675.