Tìm x thuộc z để A thuộc Z
\(A=\frac{x+3}{2x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1-2x}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vì \(-2\inℤ\)\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x+3}\inℤ\)
\(\Rightarrow7⋮x+3\)\(\Rightarrow x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
ĐK:\(x\ne-3\)
Với \(A=\frac{1-2X}{X+3}=\frac{-2x-6+7}{x+3}=\frac{-2+7}{x+3}\)
A nguyên <=>\(x+3\inƯ\left(7\right)\)\(\Rightarrow x\in\left\{1;-1;7;-7\right\}\)
Vậy...
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
\(=>A=\frac{-\left(2x-1\right)}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=-2+\frac{7}{x+3}\)\(=>\frac{7}{2x+3}\)thuộc Z
=> 7 chia hết cho 2x+3
đến đây bạn tự giải nhé
Ta thấy:
\(A=\frac{1-2x}{x+3}=\frac{7-6-2x}{x+3}=\frac{7-\left(6+2x\right)}{x+3}=\frac{7-2\left(3+x\right)}{x+3}=\frac{7}{x+3}-\frac{2\left(3+x\right)}{x+3}=\frac{7}{x+3}-2\)
Do \(2\in Z\), để \(A=\frac{1-2x}{x+3}\in Z\) thì \(\frac{7}{x+3}\in Z\)
\(\Rightarrow x+3\in U\left(7\right)=\left\{-7;-1;1;7\right\}\)
* TH1: x + 3 = -7 => x = -10
* TH2: x + 3 = -1 => x = -4
* TH3: x + 3 = 1 => x = -2
* TH4: x + 3 = 7 => x = 4
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
a, ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)
b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)
c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)
\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)
a, ĐỂ A xác định :
\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)
\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)
\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
b
a) Điều kiện : \(x\ne2;x\ne3\)
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Điều kiện \(x\in Z;x\ne2;x\ne3\)
Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên
\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)
mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)
x+3 chia hết cho 2x+3
=> 2(x+3) chia hết cho 2x+3
=> 2x+6 chia hết cho 2x+3
=> (2x+3)+3 chia hết cho 2x+3
=>3 chia hết cho 2x+ 3
Tự giải tiếp