Tiìm x để 3x^2-4x+7/3x^2-4x+5 đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
đK;
có \(A=\dfrac{3x^2-4x+7}{3x^2-4x+5}\)
\(=>A\)\(=\dfrac{3\left(x^2-2.\dfrac{2}{3}x+\dfrac{4}{9}+\dfrac{17}{9}\right)}{3\left(x^2-2.\dfrac{2}{3}x+\dfrac{4}{9}+\dfrac{11}{9}\right)}\)\(=\dfrac{\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}\)
\(=\dfrac{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}+\dfrac{6}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}=1+\dfrac{\dfrac{6}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}\)
\(\le1+\dfrac{6}{11}=\dfrac{17}{11}\) dấu "=" xảy ra<=>x=2/3