K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 7 2021

\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)

\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)

\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)

\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)

\(=\left(2x^2+16x+7\right)^2-49\)

\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)

\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)

Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).

10 tháng 4 2017

Bước 1: Tìm \(\Delta\)và rút gọn

Bước 2: Để pt .. <=> \(\Delta\).. 0

Bước 3: Kết luận

Chúc bạn thành công =))))))

10 tháng 4 2017

Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé 

6 tháng 10 2017

\(\frac{-512}{343}=\left(\frac{-8}{7}\right)^3\)

\(\Rightarrow x=3\)

6 tháng 10 2017

-512/343=(-8/7)\(^3\)

24 tháng 6 2018

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

24 tháng 6 2018

đã xong , xin tích trc rồi ta làm :)

7 tháng 3 2022

\(\left\{{}\begin{matrix}5x=5m\\y=2x-m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=10-m+1=11-m\end{matrix}\right.\)

Thay vào ta đc 

\(2m^2-3\left(11-m\right)=2\Leftrightarrow2m^2-33+3m=2\Leftrightarrow2m^2+3m-35=0\Leftrightarrow m=\dfrac{7}{2};m=-5\)

25 tháng 7 2023

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left(2x+1\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)

\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

25 tháng 7 2023

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

 

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

16 tháng 3 2023

x² - 9x + 8 = 0

Ta có:

a + b + c = 1 + (-9) + 8 = 0

Phương trình có hai nghiệm:

x₁ = 1; x₂ = 8

Vậy S = {1; 8}

=>(x-1)(x-8)=0

=>x=1 hoặc x=8