Cho \(x^2+y^2+z^2\)=1. CMR xyz+2(1+x+y+z+xy+yz+xz)\(\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
\(BĐT\Leftrightarrow\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{xyz}\)\(\ge3+\sqrt{x^2.\frac{x+y+z}{xyz}+1}+\sqrt{y^2.\frac{x+y+z}{xyz}+1}\)
\(+\sqrt{z^2.\frac{x+y+z}{xyz}+1}\)
Ta có biến đổi sau:
\(VT=\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz}{xyz}\)\(=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}+3\)
\(VP=\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Nên bđt đã cho tương đương với:
\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)\(\ge\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Đúng theo bđt cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
Cần thêm điều kiện x;y;z đôi một phân biệt và để dấu "=" xảy ra khi thì x;y;z không âm chứ không phải dương
Không mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow xy+yz+zx\ge xy\)
\(\Rightarrow\dfrac{4}{xy+yz+zx}\le\dfrac{4}{xy}\)
Đồng thời:
\(\left(z-x\right)^2=x^2+z\left(z-2x\right)\le x^2\Rightarrow\dfrac{1}{\left(z-x\right)^2}\ge\dfrac{1}{x^2}\)
\(\left(y-z\right)^2=y^2+z\left(z-2y\right)\le y^2\ge\dfrac{1}{\left(y-z\right)^2}\ge\dfrac{1}{y^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{xy}\ge4\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{xy}\ge2\) (hiển nhiên đúng theo AM-GM)