Chứng minh tổng của 20 số chính phương liên tiếp không phải là số chính phương
chung minh dung minh cho 2 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2