Cho ABC đều, từ 1 điểm M bất kì trong tam giác, hạ ME, MF, MK vuông góc vs các cạnh AB, AC và BC. AA', BB' và CC' là 3 đường cao của tam giác. CMR MK/AA' + MF/BB' + ME/CC' = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
Kẻ \(MM'\perp d\)
Xét tứ giác BB'CC' có :
\(BB'//CC'\left(\perp d\right)\)
\(\Rightarrow\)Tứ giác BB'CC' là hình thang
Xét hình thang BB'CC' có :
\(BM=MC\left(gt\right)\)
\(MM'//BB'//CC'\left(\perp d\right)\)
\(\Rightarrow B'M=C'M\)
\(\Rightarrow\)MM' là đường trung bình của hình thang ABCD
\(\Rightarrow MM'=\frac{BB'+CC'}{2}\left(1\right)\)
Xét \(\Delta AA'I\)và \(\Delta MM'I\)có :
\(\widehat{AA'I}=\widehat{MM'I}\left(=90^o\right)\)
\(AI=IM\left(gt\right)\)
\(\widehat{AIA'}=\widehat{MIM'}\)( đối đỉnh )
\(\Rightarrow\Delta AA'I=\Delta MM'I\left(ch-gn\right)\)
\(\Rightarrow AA'=MM'\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow AA'=\frac{BB'+CC'}{2}\)
Ta có: BB’ ⊥ d (gt)
CC’ ⊥ d (gt)
Suy ra: BB’ // CC’
Tứ giác BB’CC’ là hình thang
Kẻ MM’ ⊥ d
⇒ MM’ // BB’ // CC’
Nên MM’ là đường trung bình của hình thang BB’CC’
⇒MM′=BB′+CC′2(1)⇒MM′=BB′+CC′2(1)
Xét hai tam giác vuông AA’O và MM’O:
ˆOA′A=ˆOM′MOA′A^=OM′M^
AO = MO (gt)
ˆAOA′=ˆMOM′AOA′^=MOM′^ (đối đỉnh)
Do đó: ∆ AA’O = ∆ MM’O (cạnh huyền, góc nhọn)
⇒ AA’ = MM’ (2)
Từ (1) và (2) suy ra: AA′=BB′+CC′2AA′=BB′+CC′/2.