Tính nhanh
b) 98^2
chứng minh các biểu thức không phụ thuộc giá trị của biến
A) (x+3)^2 - (x-3)^2-12
B) (x-2)^2 - (x -3) (x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x+2\right)^2-\left(x-3\right)^2-10x\)
\(=x^2+4x+4-\left(x^2-6x+9\right)-10x\)
\(=x^2-6x+4-x^2+6x-9\)
=-5
b: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2+x+1\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^3-3x^2+3x-1-x^3-x^2-x-2x^2-2x-2-x\left(x^2-4\right)\)
\(=-6x^2-3-x^3+4x\)
=>Đa thức này không phụ thuộc vào biến nha bạn
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
\(a)x^2-6x-2xy+12y\\=(x^2-2xy)-(6x-12y)\\=x(x-2y)-6(x-2y)\\=(x-2y)(x-6)\)
Bạn xem lại đề!
\(b\Big) (3-2x)(3+2x)+(2x+3)(2x-5)+4x\\=3^2-(2x)^2+(4x^2-10x+6x-15)+4x\\=9-4x^2+4x^2-10x+6x-15+4x\\=(9-15)+(-4x^2+4x^2)+(-10x+6x+4x)\\=-6\)
*Đã sửa đề*
\(c\Big) 4(x+1)^2+(2x-1)^2-8(x-1)(x+1)-4x\\=4(x^2+2x+1)+(2x)^2-2\cdot2x\cdot1x+1^2-8(x^2-1^2)-4x\\=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\\=(4x^2+4x^2-8x^2)+(8x-4x-4x)+(4+1+8)\\=13\)
*Đã sửa đề*
\(d\big) (3x+2)^2+(2x-7)^2-2(3x+2)(2x-7)-x^2+36x\\=[(3x+2)^2-2(3x+2)(2x-7)+(2x-7)^2]-x^2+36x\\=[(3x+2)-(2x-7)]^2-x^2+36x\\=(3x+2-2x+7)^2-x^2+36x\\=(x+9)^2-x^2+36x\\=(x+9-x)(x+9+x)+36x\\=9(2x+9)+36x\\=18x+81+36x\)
Bạn xem lại đề!
\(Toru\)
a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)
\(=x^6-9x^3+8-x^6+9x^3=8\)
b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)
\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)
\(=x^6-y^6-x^6+y^6=0\)
\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)
Bài 1:
a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)
\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)
\(\Leftrightarrow4x=8\)
hay x=2
b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)
\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)
\(\Leftrightarrow16x^3-8x^2+7x^3=15\)
\(\Leftrightarrow23x^3-8x^2-15=0\)
\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)
\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất
2.
\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)
\(=8x^3-27-8x^3-2\)
\(=-29\)
\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)
\(=27-243=-216\)
sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min
\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)
\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)
dấu"=" xảy ra<=>x=2
2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)
\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2
3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)
\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2
b)\(98^2=\left(100-2\right)^2=10000-400+4=9604\)
Bài 2:
a) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2-12x\)
\(=x^2+6x+9-x^2+6x-9-12x\)
=0
b) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)
\(=x^2-4x+4-x^2+4x-3\)
=-1