K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

                                                                                      Giải

a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D

Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :

BE : cạnh chung 

góc ABE = góc DBE ( BE là tpg góc ABC ) 

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )

b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )

\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )

          AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )

Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD 

c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )

\(\Rightarrow\)góc BAD = góc BDA ( t/c )

Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H 

Xét \(\Delta\)vuông HAD, có :

góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )

Xét \(\Delta\) vuông ABC, có :

góc CAD + góc BAD = 90o ( 2 góc phụ nhau )

Mà góc BDA = góc BAD ( cmt )

Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD    (1)

Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ )    (2)

Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )

1 tháng 5 2019

Đúng là óc lợn .

:)))

16 tháng 8 2021

a) Xét tam giác BHA và BHE có:

BD chung

ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)

ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)

Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác củaˆBB^)

⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)

⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)

ED vuông góc với B tại E

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đpcm)

16 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

=> ΔBHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

BE chung

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét ΔABI và ΔHBI có :

BA = BH (ΔBAE = ΔBHE (cmt)

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

BI chung

=> ΔABI = ΔHBI ( c.g.c )

=> ∠AIB = ∠AIH ( 2 góc tương ứng )

Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )

=> ∠AIB = ∠AIH = 900

=> BI ⊥ AH (1)

Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

=> I là trung điểm của AH ( 3)

Từ (1) (2) (3) => BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét ΔKAE và ΔCHE có:

∠KAE = ∠CHE ( = 900 )

AE = HE ( ΔBAE = ΔBHE (cmt)

∠AEK = ∠HEC ( 2 góc đối đỉnh )

=> ΔKAE = ΔCHE ( g.c.g )

=> EK = EC ( 2 cạnh tương ứng )

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

19 tháng 5 2022

undefined

a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:

\(\widehat{A1}\)\(\widehat{A2}\) ( giả thiết)

AD chung

=> \(\Delta AHD=\Delta AED\) ( ch-gn)

=> DH = DE ( 2 cạnh tương ứng )

b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.

Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:

\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)

HD = HE ( cmt)

=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)

=> DM = DC ( 2 cạnh tương ứng)

=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)

~ Cậu ktra lại nhé~

 

15 tháng 12 2017

Bạn xem lời giải bài tương tự tại đường link dưới nhé:

Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath

23 tháng 4 2019

giúp mik vs mik cho please