Cho 2 số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng: a chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9.
Giải:
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.
Như vậy:2a-k chia hết cho 9
và a-k chia hết cho 9
Suy ra : (2a-k)-(a-k) chia hết cho 9
Do đó : a chia hết cho 9
Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:
$a-S(a)\vdots 9$
$2a-S(2a)\vdots 9$
$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$
$\Rightarrow (2a-k)-(a-k)\vdots 9$
$\Rightarrow a\vdots 9$
Ta biết rằng 1 số & tổng các chữ số của nó có cùng số dư trong phép chia cho 3 , do đó hiệu của chúng chia hết cho 3
Như vậy: 2a-k chia hết cho 3, và a-k chia hết cho 3
=> ( 2a-k )-(a-k) chia hết cho 3
=> a chia hết cho 3
**** mình nha bạn !!!!!!
Ta biết rằng 1 số & tổng các chữ số của nó có cùng số dư trong phép chia cho 3 , do đó hiệu của chúng chia hết cho 3
Như vậy: 2a-k chia hết cho 3, và a-k chia hết cho 3
=> ( 2a-k )-(a-k) chia hết cho 3
=> a chia hết cho 3
**** mình nha bạn !!!!!!
đề ra mập mờ quá
a và 2a
thế 2a là 2.a hay là 2a nói chung hiểu kiểu gì cũng sai
không tồn tại
người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?
sau đó mới nâng cấp lên tổng quát.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9