K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

\(a-b=11\)

\(P=\dfrac{5a-b}{4a+11}+\dfrac{5b-a}{4b-11}=\dfrac{5a-b}{4a+a-b}+\dfrac{5b-a}{4b-\left(a-b\right)}\)

\(=\dfrac{5a-b}{5a-b}+\dfrac{5b-a}{5b-a}\)

\(=2\)

Vậy...

18 tháng 6 2020

Đính chính . Em viết sai điều kiện ạ. 

Đúng phải là a#-11/4 và b#11/4 

1) Sửa đề: x=0,09

Thay x=0,09 vào A, ta được:

\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)

23 tháng 3 2022

lần đầu tiên trong đời thấy dấu . là dấu nhân chỉ thấy dấu sao với cả x thôi

23 tháng 3 2022

B

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

6 tháng 2 2022

nhờ bạn có thể giải chi tiết cho mình câu 1b đc ko

Chọn B

NV
18 tháng 3 2023

\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)

\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)

3 tháng 4 2021

\(P=\frac{5a-b}{4a+11}+\frac{5b-a}{4b-11}=\frac{4a+a-b}{4a+11}+\frac{4b+b-a}{4b-11}\)

\(=\frac{4a+11}{4a+11}+\frac{4b-11}{4b-11}\left(\text{vì }a-b=11\right)\)

\(=1+1=2\)

4 tháng 2 2023

\(đk:a;b\ne\dfrac{5}{3}\)

\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}=\dfrac{3b-28}{3\left(11+b\right)-5}-\dfrac{38-3\left(11+b\right)}{5-3b}=1-1=0\)

4 tháng 2 2023

làm như nào để ra 11 + b ạ?

13 tháng 3 2022

1. Với x = 36
=> A= \(\dfrac{\sqrt{36}-2}{\sqrt{36}-1}\)=\(\dfrac{4}{5}\)
2. Với x >0, x ≠1
B=\(\dfrac{x-5}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}\)
B=\(\dfrac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. P=\(\dfrac{A}{B}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có \(\sqrt{P}< \dfrac{1}{2}\)
=>P<\(\dfrac{1}{4}\)
=> \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)<\(\dfrac{1}{4}\)
=> \(4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
=> \(4\sqrt{x}-8< \sqrt{x}+1 \)
=> \(3\sqrt{x}< 9\)
=>\(\sqrt{x}< 3\)
=> x< 9
Lại có x ϵ Z => x ϵ {-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
Ta thử lại với x ≠ 1
=> x ϵ {-8,-7,-6,-5,-4,-3,-2,0,2,3,4,5,6,7,8}