12 đội bóng thi đấu với nhau theo vòng tròn (hai đội khác nhau thi đấu với nhau đúng một lần). CMR: Sau 5 vòng đấu, không có ba đội bóng chưa thi đấu đôi một với nhau.
Mn giúp mình với, cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Có 4 đội bóng thi đấu với nhau mà mỗi đội đều được đá với 3 đội còn lại nên số trận đấu là :
4 x 3 = 12 ( trận đấu )
Nhưng do mỗi trận đã bị tính hai lần nên số trận đấu là :
12 : 2 = 6 ( trận đấu )
b ) Tương tự như câu a ta sẽ có công thức tổng quát cho n đội
n ( n - 1 ) : 2 ( trận đấu )
huhu , chưa ai trả lời . đáp án đây :
giả sử 6 đội bóng là A,B,C,D,E,F . Xét đội A phải đấu từ 0 đến 5 trận nên theo nguyên lý Dirichlet ta suy ra : A đã đấu hoặc A chưa đấu với ít nhất với 3 đội khác . không mất tính tổng quát , giả sử A đã đấu với B,C,D .
+ Nếu B,C,D từng cặp chưa đấu với nhau thì bài toán được chứng minh
+ Nếu B,C,D có 2 đội đã đấu với nhau , ví dụ B và C thì 3 đội A,B,C từng cặp đã đấu với nhau
Như vậy bất cứ lúc nào cũng có 3 đội trong đó từng cặp đã đấu với nhau hoặc chưa đấu với nhau trận nào.