góc xOy không bằng 180 độ có tia phân giác Ot .A thuộc Ox ,Am //Oy ( tia Am nằm trong góc xOy ). An là tia phân giác của góc xAm. Vẽ tia AH vuông góc với Ot.
a, chứng minh : An //Ot
b,chứng minh : AH vuông góc với On và AH là tia phân giác của góc OAm
a) Ta có: Ot là tia phân giác của \(\widehat{xOy}\) => \(\widehat{O_1}=\widehat{O_2}=\frac{\widehat{xOy}}{2}\) (1)
On là tia phân giác của \(\widehat{xAm}\) => \(\widehat{A_1}=\widehat{A_2}=\frac{1}{2}\widehat{xAm}\) (2)
Mà Am // Oy (gt) => \(\widehat{xAm}=\widehat{xOy}\) (đồng vị) (3)
Từ (1), (2) và (3) => \(\widehat{O_1}=\widehat{O_2}=\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_2}\) và \(\widehat{O_2}\)ở vị trí đồng vị => An // Ot
b) Ta có: \(\hept{\begin{cases}AH\perp Ot\left(gt\right)\\Ot//On\left(cmt\right)\end{cases}}\Rightarrow AH\perp An\)
Xét tam giác OAH vuông tại H có: \(\widehat{O_2}+\widehat{A_3}=90^0\)
Lại có: \(\widehat{A_1}+\widehat{A_4}=90^0\)(phụ nhau)
mà \(\widehat{O_2}=\widehat{A_1}\) (cm câu a)
=> \(\widehat{A_3}=\widehat{A_4}\) -> AH là tia phân giác của \(\widehat{OAm}\)
Có chắc là đúng ko hả bạn?