K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

DE=5cm:DH=6cm:EH=8cm

1 tháng 2 2019

+) Do ΔABC = ΔDEH nên:

AB = DE = 5 cm

AC = DH= 6 cm

+) Vì chu vi tam giác DEH là 19 cm nên:

DE + EH + DH = 19

Thay số: 5 + EH +6 = 19 suy ra: EH = 8 cm

Vậy độ dài các cạnh của tam giác DEH là: DE = 5cm; DH = 6cm; EH = 8cm.

30 tháng 10 2016

Tam giác ABC = Tam giác DEH (gt)

=> AB = DE (2 cạnh tương ứng) mà AB = 5 (cm) => DE = 5 (cm)

AC = DH (2 cạnh tương ứng) mà AC = 6 (cm) => DH = 6 (cm)

SDEH = 19

DE + DH + EH = 19

5 + 9 + EH = 19

EH = 19 - 9 - 5

EH = 5 (cm)

27 tháng 11 2018

mình ko hiểu sao DH= 6cm mà, sao lại là 9cm?

7 tháng 7 2017

\(DE=5cm;DH=6cm;EH=8cm\)

5 tháng 11 2017

Vì tam giác ABC = tam giác DEH

=> AB=De

4 tháng 3 2017

Ta có:

  

Từ đó tính được A'B' = 9cm, B'C' = 15cm, A'C' = 21cm

17 tháng 5 2021

Ta có tam giác ABC = tam giác MNP 

=> AB = MN = 5 cm 

=> AC = MP = 8 cm 

Lại có : \(P_{MNP}=MN+NP+MP=20\)

\(\Rightarrow5+8+NP=20\Leftrightarrow NP=7\)cm 

Vậy AB = 5 cm ; NP = 7 cm ; MP = 8 cm 

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)

Ta có:

\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)

Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).