so sánh:
a) x= 911+2 / 911+3 và y= 912+2 / 912+3
Mình đag cần rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải;
$9^9+9^{10}+9^{11}+9^{12}=9^9(1+9+9^2+9^3)$
$=9^9.820$ không chia hết cho 100 bạn nhé. Bạn xem lại đề.
Áp dụng \(\frac{a}{b}< 1\) <=> \(\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(\frac{41}{91}=\frac{410}{910}< \frac{410+1}{910+1}=\frac{411}{911}\)
=> \(\frac{41}{91}< \frac{411}{911}\)
Trả lời:
\(x=\frac{9^{11}+2}{9^{11}+3}=\frac{9^{11}+3-1}{9^{11}+3}=\frac{9^{11}+3}{9^{11}+3}-\frac{1}{9^{11}+3}=1-\frac{1}{9^{11}+3}\)
\(y=\frac{9^{12}+2}{9^{12}+3}=\frac{9^{12}+3-1}{9^{12}+3}=\frac{9^{12}+3}{9^{12}+3}-\frac{1}{9^{12}+3}=1-\frac{1}{9^{12}+3}\)
Ta có: \(9^{11}< 9^{12}\)
\(\Leftrightarrow9^{11}+3< 9^{12}+3\)
\(\Leftrightarrow\frac{1}{9^{11}+3}>\frac{1}{9^{12}+3}\)
\(\Leftrightarrow-\frac{1}{9^{11}+3}< -\frac{1}{9^{12}+3}\)
\(\Leftrightarrow1-\frac{1}{9^{11}+3}< 1-\frac{1}{9^{12}+3}\)
\(\Leftrightarrow x< y\)
Vậy x < y