K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:

\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{1+a^2+b^2+2ab}\)

\(=\frac{4}{1+\left(a+b\right)^2}=\frac{4}{1+1}=2\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_A=2\) khi \(a=b=\frac{1}{2}\)

23 tháng 12 2016

Bất phương trình và hệ bất phương trình một ẩn

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

11 tháng 7 2017

ÁP dụng BĐT AM-Gm  ta có: 

\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)

ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm

\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)

\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)

Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)

\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)

Đúng hay ta có ĐPCM xyar ra khi a=b=c=1

28 tháng 5 2018

\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)

\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)

Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{1}{9abc}\ge3\)

Do đó ta có: 

\(A\ge\frac{9}{7}+3=\frac{30}{7}\)