Chứng mih rằng : 3/4 +8/9 +15/16+...+ 1599/1600>38
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Ta có:
\(C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(\Rightarrow C=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(\Rightarrow C=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)(99 chữ số 1)
\(\Rightarrow C=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
Ta lại có:
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Đặt D\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow D< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow D< 1-\frac{1}{100}\)
\(\Rightarrow D< \frac{99}{100}< 1\)
\(\Rightarrow C>99-1\)
\(\Rightarrow C>98\)
Vậy C>98 (đpcm)
đề đúng rồi
\(C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(C=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(C=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(C=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Vì \(A< 1\)nên \(B=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)>99-1=98\)
= 3/22 + 8/32 + 15/42 + ... + 9999/1002
= 1.3/2.2 + 2.4/3.3 + 3.5/4.4 + .... + 99.101/100.100
\(=\frac{1.3.2.4.3.5.4.6...99.101}{2^2.3^2....100^2}=\frac{1.2.3^2.4^2...99^2.100.101}{2^2.3^2....100^2}=\frac{1.2.101}{2^2.100}=\frac{101}{200}\)
Ta có : \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{1599}{1600}\)
\(=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{1600}\right)\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\)
\(=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)...\left(1-\frac{1}{1601}\right)\)
Vì \(\frac{1}{2}>\frac{1}{3};\frac{1}{4}>\frac{1}{5};\frac{1}{6}>\frac{1}{7};...;\frac{1}{1600}>\frac{1}{1601}\)
\(\Rightarrow1-\frac{1}{2}< 1-\frac{1}{3};1-\frac{1}{4}< 1-\frac{1}{5};1-\frac{1}{6}< 1-\frac{1}{7};...;1-\frac{1}{1600}< 1-\frac{1}{1601}\)
\(\Rightarrow A< B\)
hay A<\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\)
Vậy A<\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\).
\(C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
Ta có: \(\frac{3}{4}=1-\frac{1}{4};\frac{8}{9}=1-\frac{1}{9};\frac{15}{16}=1-\frac{1}{16};...;\frac{9999}{10000}=1-\frac{1}{10000}\)
=> \(C=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{10000}\)
=> \(C=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)(99 chữ số 1)
=> \(C=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Ta lại có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\); \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{4^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\); ...;\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
=> C > 99-1
=> C > 98
Ta có :C=
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\)\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)l<\(\frac{100}{101}\)(tự tính)
Suy ra C> 98(đpcm)
Ta luôn có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{7}< \frac{6}{7}\)
\(........\)
\(\frac{1599}{1600}< \frac{1600}{1601}\)
Từ trên: \(\Rightarrow A=\frac{1}{2}.\frac{3}{4}....\frac{1599}{1600}\left(1\right)\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}...\frac{1599}{1600}< \frac{2}{3}.\frac{4}{5}....\frac{1600}{1601}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\left(đpcm\right)\)