Gi¶i ph¬ng tr×nh: \(x^2+x+24-2x\sqrt{2x+3}=6\sqrt{12-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-2|+|x-3|=1
TH1: x<2
Pt sẽ là 2-x+3-x=1
=>5-2x=1
=>x=2(loại)
TH2: 2<=x<3
Pt sẽ là x-2+3-x=1
=>1=1(nhận)
TH3: x>=3
Pt sẽ là x-2+x-3=1
=>2x=6
=>x=3(nhận)
b: ĐKXĐ: x>=-2
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
TH1: \(\sqrt{x+2}< 2\Leftrightarrow0< =x+2< 4\Leftrightarrow-2< =x< 2\)
Pt sẽ là \(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
=>5-2 căn x+2=1
=>2 căn x+2=4
=>x+2=4
=>x=2(loại)
TH2: 2<=căn x+2<3
=>4<=x+2<9
=>2<=x<7
Pt sẽ là \(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
=>1=1(nhận)
TH3: căn x+2>=3
=>x+2>=9
=>x>=7
Pt sẽ là \(\sqrt{x+2}-3+\sqrt{x+2}-2=1\)
=>2 căn x+2=6
=>x+2=9
=>x=7(nhận)
\(b1:=\sqrt{2}\left(\sqrt{3}+1\right).\sqrt{2-\sqrt{3}}\\ =\left(\sqrt{3}+1\right).\sqrt{4-2\sqrt{3}}\\ =\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)\\ =2\\ \\ b2:a,=\sqrt{\dfrac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}-3\right)}{\left(2\sqrt{5}-3\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{27-7\sqrt{5}}}{2\sqrt{5}-3}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{2}}{\sqrt{2}}.\dfrac{\sqrt{27-7\sqrt{5}}}{2\sqrt{5}-3}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{54-14\sqrt{5}}}{2\sqrt{10}-3\sqrt{2}} .\left(\sqrt{10}-\sqrt{2}\right)\\ \)\(=\dfrac{\sqrt{\left(7-\sqrt{5}\right)^2}}{2\sqrt{10}-3\sqrt{2}}.\left(\sqrt{10}-\sqrt{2}\right)\)\(\\ =\dfrac{8\sqrt{10}-12\sqrt{2}}{2\sqrt{10}-3\sqrt{2}}\\ =4\)
4. đặt \(\sqrt[3]{x+24}=a\) và \(\sqrt{12-x}=b\)(b>=0)
==>ta có hệ pt
\(\int_{a^3+b^2=36}^{a+b=6}\)<=> \(\int_{a^3+\left(6-a\right)^2=36}^{b=6-a}\)<=> \(\int_{b=6-a}^{a^3+a^2-12a=0}\)<=> \(\int_{b=6-a}^{a\left(a^2+a-12\right)=0}\)<=>\(\int_{b=6-a}^{a\left(a+4\right)\left(a-3\right)=0}\)
đến đây bạn tự tìm a;b rufit hay vào tìm x là ok
3. \(\Leftrightarrow\sqrt[3]{2x^2}-\sqrt[3]{x+1}+\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}=0\)
\(\Leftrightarrow\frac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{2x^2-x-1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}=0\)
\(\Leftrightarrow2x^2-x-1=0\)
( do \(\frac{1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}>0\forall xTMĐK\))
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=\frac{9}{8}\Leftrightarrow\left(x-\frac{1}{4}\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}=\frac{3}{4}\\x-\frac{1}{4}=-\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\) ( TM )
1. \(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|=1\)
+ Ta có : \(\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
\(\Leftrightarrow2\le\sqrt{x}\le3\Leftrightarrow4\le x\le9\)
2. + \(ĐK:4-2x-x^2\ge0\)
+ VT = \(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)
\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\) \(\ge\sqrt{4}+\sqrt{9}=5\) (1)
Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
+ VP \(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\forall x\) (2)
Dấu "=" \(\Leftrightarrow x=-1\)
+ Từ (1) và (2) suy ra : pt \(\Leftrightarrow VT=VP=5\Leftrightarrow x=-1\) (TM)
3. + TH1: \(x< 0\) ta có :
\(VT< \sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
+ TH2 : x = 0 ta có :
\(VT=\sqrt[3]{1}+\sqrt[3]{0}=1\) ( TM )
+ TH3 : x > 0 ta có :
\(VT>\sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
Vậy x = 0 là nghiệm duy nhất của pt
4. \(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+3\right)-24=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x-8\right)-24=0\)
\(\Leftrightarrow t\left(t-5\right)-24=0\) ( với \(t=x^2+2x-3\) )
\(\Leftrightarrow t^2-5t-24=0\Leftrightarrow\left(t+3\right)\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=-3\\x^2+2x-3=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=2\sqrt{3}-1\\x=-2\sqrt{3}-1\end{matrix}\right.\) ( TM )
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
Bài 1: đơn giản là đi kiểm tra các BĐT tam giác
\(a+b>c\Rightarrow\sqrt{a+b}>\sqrt{c}\)
Mà với \(a;b\) dương ta luôn có \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
\(\Rightarrow\sqrt{a}+\sqrt{b}>\sqrt{c}\)
Hoàn toàn tương tự với 2 tổng còn lại
Từ dạng tổng chỉ cần chuyển vế ta sẽ chứng minh được các BĐT dạng hiệu
Bài 2:
ĐKXĐ: \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\\x=b\\\sqrt{2x+1}=c\end{matrix}\right.\) phương trình trở thành:
\(a\left(b+c\right)=a^2+bc\Leftrightarrow a^2-ab-ac+bc=0\)
\(\Leftrightarrow a\left(a-b\right)-c\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(x\ge0\right)\\\sqrt{x+2}=\sqrt{2x+1}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x+2=2x+1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Câu 3:
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow x^2+1-\sqrt{6x^2+1}+\sqrt{2x-3}-1=0\)
\(\Leftrightarrow\frac{x^4+2x^2+1-\left(6x^2+1\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2x-3-1}{\sqrt{2x-3}+1}=0\)
\(\Leftrightarrow\frac{x^2\left(x+2\right)\left(x-2\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x^2\left(x+2\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2}{\sqrt{2x-3}+1}\right)=0\)
\(\Leftrightarrow x-2=0\) (ngoặc phía sau luôn dương \(\forall x\ge\frac{3}{2}\))
\(\Rightarrow x=2\)
a) ĐKXĐ: x ≥ \(\dfrac{5}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}=}2\sqrt{2}\)
⇔ \(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
⇔ \(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
⇔ \(\sqrt{2x-5}+3\) + |\(\sqrt{2x-5}-1\)| = 4
⇔ |\(\sqrt{2x-5}-1\)| = 1 - \(\sqrt{2x-5}\)
⇔ \(\sqrt{2x-5}-1\le0\)
⇔ \(\sqrt{2x-5}\le1\)
⇔ 2x - 5 ≤ 1
⇔ x ≤ \(\dfrac{5}{2}\)
Vậy phương trình có nghiệm x = \(\dfrac{5}{2}\)
c) ĐKXĐ: \(-1\le x\le1\)
\(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
⇔ \(\sqrt{1-x^2}-1=2x\)
⇔ \(\sqrt{1-x^2}=2x+1\)
⇔ \(1-x^2=4x^2+4x+1\)
⇔ \(5x^2+4x=0\)
⇔ \(x\left(5x+4\right)=0\)
⇔ \(\left\{{}\begin{matrix}x=0\left(TM\right)\\x=-\dfrac{4}{5}\left(TM\right)\end{matrix}\right.\)
Vậy PT có tập nghiệm S = \(\left\{-\dfrac{4}{5};0\right\}\)
(... phần còn lại m` vẫn chưa làm được)
Mình thấy ý c bạn làm có vấn đề:
\(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
\(\Leftrightarrow\sqrt{1-x^2}+\sqrt{1+x}-\sqrt{1-x}-1=2x\)
Bạn xem lại giúp mình nhé! Cảm ơn!
1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)
<=> \(\sqrt{\left(x-10\right)^2}=10\)
<=> \(\left|x-10\right|=10\)
=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)
Vậy S = \(\left\{20;0\right\}\)
2) \(\sqrt{x +2\sqrt{x}+1}=6\)
<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)
<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)
<=> \(\left|\sqrt{x}+1\right|=6\)
=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)
Vậy S = \(\left\{25\right\}\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)
<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)
<=> \(\left|x-3\right|=\sqrt{3}+1\)
=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)
Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)
<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)
<=> \(\left|\sqrt{3x}+1\right|=5\)
=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)
<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)
Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)
<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)
<=> \(\left|\sqrt{6x}+2\right|=7\)
=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)
=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)
đk: \(\frac{-3}{2}\le x\le12\)
pt \(\Leftrightarrow\left(x^2-2x\sqrt{2x+3}+2x+3\right)+\left(9-6\sqrt{12-x}+12-x\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+3}\right)^2+\left(3-\sqrt{12-x}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{2x+3}=0\left(1\right)\\3-\sqrt{12-x}=0\left(2\right)\end{cases}}\)
pt(1)\(\Leftrightarrow x=\sqrt{2x+3}\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x-3=0\end{cases}}\) \(\Leftrightarrow x\ge0\) và \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\) \(\Leftrightarrow x=3\)
pt(2) \(\Leftrightarrow\sqrt{12-x}=3\Leftrightarrow12-x=9\Leftrightarrow x=3\)
Vậy pt có nghiệm: x=3 (tm)