giúp mình vẽ lại hình đó và làm bài đó ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
$(\sqrt{A})^2$ và $\sqrt{A^2}$ khác nhau ở chỗ, ở cái thứ nhất thì bắt buộc điều kiện $A$ phải không âm, để căn thức xác định. Còn cái thứ hai thì $A^2$ luôn không âm rồi nên căn thức xác định với mọi $A$
Vậy, 1 cái thì yêu cầu $A$ luôn không âm từ trước. Một cái $A$ nhận giá trị nào cũng được. Từ đây ta cũng suy ra được:
$(\sqrt{A})^2=A$ không cần dùng trị tuyệt đối vì $A$ đã không âm sẵn rồi.
$\sqrt{A^2}=|A|$ vì không biết $A$ âm hay dương nên phải cho trị tuyệt đối vô để biểu thị căn bậc 2 số học không âm.
Em lưu ý:
- Viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
- Khi đặt nhiều câu hỏi việc sử dụng dấu "+" đầu dòng nên kết hợp với tách dòng, tách đoạn để câu hỏi trở nên sáng sủa, rõ ràng. Cách đặt câu hỏi em cũng nên lưu ý viết gọn thôi, tập trung vào đúng cái không rõ, không nên dài dòng để câu hỏi được mạch lạc.
Em hiểu đơn giản là em muốn có câu trả lời rõ ràng, mạch lạc thì người trả lời cũng muốn ở em điều ngược lại. Nếu em đặt câu hỏi không được rõ, quá dài thì người đọc sẽ bị ngán hoặc hiểu sai câu hỏi. Do đó, 1 là họ sẽ bỏ qua câu hỏi của em, 2 là họ hiểu lầm nên sẽ có thể không trả lời đúng ý em muốn.
a: Xét ΔDBE có DB=DE
nên ΔDBE cân tại D
hay \(\widehat{DBE}=\widehat{DEB}\)
b: Ta có: \(\widehat{MBE}+\widehat{DEB}=90^0\)
\(\widehat{EBN}+\widehat{DBE}=90^0\)
mà \(\widehat{DBE}=\widehat{DEB}\)
nên \(\widehat{MBE}=\widehat{NBE}\)
hay BE là tia phân giác của góc MBN
c: Xét ΔMBE vuông tại M và ΔNBE vuông tại N có
BE chung
\(\widehat{MBE}=\widehat{NBE}\)
Do đó: ΔMBE=ΔNBE
Suy ra: EM=EN
d: Ta có: ΔMBE=ΔNBE
nên BM=BN
hay B nằm trên đường trung trực của MN(1)
Ta có:EM=EN
nên E nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra BE là đường trung trực của MN
Bạn vào khuông câu hỏi ( hoặc trả lời ) chọn trên thanh công cụ biệu tượng hình tròn kèm theo tam giác
Hoặc có thể vẽ vào phần mềm khác rồi copy qua !
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
b: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) co
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
CD=CM+MD=CA+DB
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: AC*BD=CM*MD=OM^2=R^2
a, \(=>R5nt\left[\left(R1ntR3\right)//\left(R2ntR4\right)\right]\)
\(=>Rtd=R5+\dfrac{\left(R1+R3\right)\left(R2+R4\right)}{R1+R2+R3+R\text{4}}\)
\(=2+\dfrac{\left(3+1\right)\left(2+2\right)}{3+1+2+2}=4\left(om\right)\)
b,\(=>Im=\dfrac{20}{4}=5A=I5\)\(=I1234\)
\(=>U1234=5.\dfrac{\left(3+1\right)\left(2+2\right)}{3+1+2+2}=10V=U24\)
\(=>I24=\dfrac{10}{2+2}=2,5A=IA\)