trong các số từ 1 đến 2018 có bao nhiêu số chia hết cho 2 nhưng ko chia hết cho 3?
giải đầy đủ ra giúp mik nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TICK CHO MÌNH NHÉ
Trả lời:
Từ 1 đến 2018 có các số chia hết cho 2 nhưng ko chia hết cho 3 là
( 2018 - 2 ) : 2 +1= 1009 số
HỌC TỐT NHÉ
Những số chia hết cho 5 thì có tận cùng là 0 và 5
Ta có dãy số sau: 5;10;15;20;25;............;2005
Nhận thấy: Đây là dãy số tự nhiên cách đều nhau 5 đơn vị
Vậy từ 1 đến 2009 có các stn chia hết cho 5 là:
(2005-5):5+1=401 (số)
Số chia hết cho cả 2 và 5 từ 10-250
(250-10):10+1 =25 số
Những số chia hết cho 2 từ 2-252
(252-2):2+1 =126 số
Những số chỉ chia hết cho 2 mà không chia hết cho 5 là: 126-25 = 121
Số chia hết chia hết cho 5 từ 5-250
(250-5):5+1 = 50 số
Những số chỉ chia hết cho 5 mà không chia hết 2 là 50 – 25 = 25 số
Tổng số các số đã xóa là 121+25 = 146 số
Còn lại là 252-146 = 106 s
1) \(BCNN\left(3;5;7\right)=105\)
\(\Rightarrow BC\left(3;5;7\right)\in\left\{0;105;210;...;1050;1155;...1890;1995;2100;...\right\}\)
Từ 1000 đến 2000 chia hết cho 3,5,7 là :
\(\left(1995-1050\right):105+1=10\) ( số)
Từ 1000 đến 2000 có :
\(\left(2000-1000\right):1+1=1000\) (số)
Từ 1000 đến 2000 không chia hết cho 3,5,7 là :
\(1000-10=990\) (số)
1. Co : (2025-2001):2+1=13 so le 2. Tong la : (2025+2001)x13:2=26169 3. Co :(999-102):3+1=300 so 4. Tong la : (999+102)x300:2=165150 5. Co : (999-108):9+1=100 so Tong la : (999+108)x100:2=55350
Lời giải:
Số nguyên chia hết cho 3 và 4 nghĩa là nó chia hết cho 12.
Vì vậy nó có dạng $12k$ với $k$ nguyên
$12k\not\vdots 8$
$\Rightarrow 3k\not\vdots 2$ hay $k$ lẻ.
Đặt $k=2t+1$ thì số nguyên thỏa mãn đề có dạng $12(2t+1)$ với $t$ nguyên
Ta có: $1\leq 12(2t+1)\leq 2018$
$-11\leq 24t\leq 2006$
$\frac{-11}{24}\leq t\leq \frac{1003}{12}$
Vì $t$ nguyên nên $t\in \left\{0; 1;2;...; 83\right\}$
Vậy có $\frac{83-0}{1}+1=84$ số $t$ thỏa mãn, tương ứng có 84 số nguyên thỏa mãn ycđb.