a,b thuộc N
a: 5 dư 2
b: 5 dư 3
CM: a.b/5 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
Đặt a=5x+2
b=5y+3
a.b=(5x+2)(5y+3)=25xy+15x+10y + 6=5(5xy+3x+2y+1)+1
Do 5(5xy+3x+2y+1) chia hết cho 5
=>5(5xy+3x+2y+1)+1 chia 5 dư 1
Vậy a . b chia 5 dư 1 với a:5 dư 2 và b:5 dư 3
Ta có: a = 5 x p + 2 (p ∈ N )
Tương tự ta có: b = 5 x q + 3 (q ∈ N )
Theo bài ra ta có: a x b = (5 x p + 2) x (5 x q + 3)
Hay: a x b = 25 x p x q + 10 x q + 15 x p + 6 = 5 x (5 x p x q + 2 x q + 3 x p) + 6
Vì: 5 x (5 x p x q + 2 x q + 3 x p) chia hết cho 5; còn 6 chia cho 5 dư 1
Suy ra: a x b chia cho 5 có số dư là 1
a chia 5 dư 1 => a có dạng 5k+1
b chia 5 dư 2 => b có dạng 5k'+2
a.b=(5k+1)(5k'+2)=25kk'+10k+5k'+2
ta thấy \(25kk'⋮5\)\(10k⋮5\)\(5k'⋮5\)'
nên ab chia 5 dư 2
a : 5 dư 4 => a = 5q + 4
b : 5 dư 3 => b = 5k + 3
a.b = ( 5k + 3 )( 5q + 4) = 25.k.q + 20k + 15q + 12 = 5 ( 5k.q + 4k + 3q + 2) + 2
chia 5 dư 2
Số tự nhiên a khi chia cho 5 dư 1 ,số tự nhiên b khi chia cho 5 dư 4.Hỏi a.b chia cho 5 dư bao nhiêu
a chia 5 dư 1
=> a có dạng 5k + 1
b chia 5 dư 4
=> b có dạng 5k + 4
=> ab = ( 5k + 1 ) ( 5k + 4 )
=> ab = 25k2 + 20k + 5k + 4
=> ab = 5 ( 5k2 + 4k + 1 ) + 4
=> ab chia 5 dư 4
Vậy, ab chia 5 dư 4
ab gồm a : 5 dư 1 và b : 5 dư 2
Vậy b có thể là số 2,7
a có thể là số 1,6
Vậy các số có thể là : 17,12,62,67
Các số này đều chia 5 dư 2, vậy số ab có a chia 5 dư 1, b chia 5 dư 2 chia 5 dư 2
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5
Theo đề: a : 5 dư 2 =>a+3 : hết cho 5
b : 5 dư 3 =>b+2 : hết cho 5
=>ab+2*3=ab+6
mà ab:hết cho 5
6:5 dư 1
=>ab:5 dư 1
A=1.2.3+2.3.4+3.4.5+...+98.99.100
Ta có dạng của a=5k+2 (k là số tự nhiên)
b= 5p+3 (p là số tự nhiên)
Suy ra a.b = (5k+2).(5p+3)= 5^2.kp+5k.3+2.5p+6= 5.(5kp+3k+2p+1) +1
Vậy a.b chia 5 dư 1 (ĐPCM)