Tìm x để hàm số đạt giá trị nhỏ nhất
a)\(y=\left(sinx+3\right)^2-1\)
b)\(y=1-3\sqrt{1-cos^2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(-1\le sinx\le1\)
\(\Leftrightarrow1\ge-sinx\ge-1\)
\(\Leftrightarrow4\ge3-sinx\ge2\) \(\Leftrightarrow16\ge\left(3-sinx\right)^2\ge4\)\(\Leftrightarrow17\ge\left(3-sinx\right)^2+1\ge5\)
\(\Leftrightarrow17\ge y\ge5\)
\(y_{min}=5\Leftrightarrow sinx=1\)\(\Leftrightarrow\)\(x=\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)
\(y_{max}=17\Leftrightarrow\)\(sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)
b)\(y=\left(sin^2x+cos^2x\right)^2-2.sinx^2cos^2x\)\(=1-\dfrac{1}{2}.sin^22x\)
Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{1}{2}.sin^22x\ge-\dfrac{1}{2}\)
\(\Leftrightarrow1\ge1-\dfrac{1}{2}.sin^22x\ge\dfrac{1}{2}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{2}\)
\(y_{min}=\dfrac{1}{2}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=-1\\sin2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)
c)\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-3sin^2x.cos^2x=1-\dfrac{3}{4}.sin^22x\)
Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{3}{4}.sin^22x\ge-\dfrac{3}{4}\)
\(\Leftrightarrow1\ge1-\dfrac{3}{4}.sin^22x\ge\dfrac{1}{4}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{4}\)
\(y_{min}=\dfrac{1}{4}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)
Vậy...
a, Đặt \(t=sinx\left(t\in\left[-1;1\right]\right)\)
\(y=f\left(t\right)=\left(3-t\right)^2+1=t^2-6t+10\)
\(\Rightarrow min=min\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(1\right)=5\)
\(\Rightarrow max=max\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(-1\right)=17\)
b, \(y=sin^4x+cos^4x=1-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)
\(y=f\left(t\right)=1-\dfrac{1}{2}t^2\)
\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{2}\)
\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)
c, \(y=sin^6x+cos^6x\)
\(=sin^4x+cos^4x-sin^2x.cos^2x\)
\(=1-3sin^2x.cos^2x\)
\(=1-\dfrac{3}{4}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)
\(y=f\left(t\right)=1-\dfrac{3}{4}t^2\)
\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{4}\)
\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)
Câu 1: Có \(-\dfrac{\pi}{3}\le\)\(x\le\dfrac{\pi}{2}\)
\(\Leftrightarrow\dfrac{1}{2}\le cosx\le1\)
\(\Rightarrow-2\ge-4cosx\ge-4\)
\(\Leftrightarrow\sqrt{3}\ge\sqrt{5-4cosx}\ge1\)
Vậy \(y_{min}=1\)
Câu 2: \(\left(\sqrt{3}+1\right)cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx-\sqrt{3}=0\)
\(\Leftrightarrow cos^2x+\sqrt{3}cos^2x+\sqrt{3}sinx.cosx-sinx.cosx+sinx-cosx-\sqrt{3}=0\)
\(\Leftrightarrow-\sqrt{3}\left(1-cos^2x\right)+\sqrt{3}sinx.cosx+cosx\left(cosx-sinx\right)-\left(cosx-sinx\right)=0\)
\(\Leftrightarrow-\sqrt{3}sin^2x+\sqrt{3}sinx.cosx+\left(cosx-1\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\sqrt{3}sinx\left(cosx-sinx\right)+\left(cosx-1\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(\sqrt{3}sinx+cosx-1\right)=0\)
\(\Leftrightarrow-\sqrt{2}.sin\left(x-\dfrac{\pi}{4}\right)\left[2sin\left(x+\dfrac{\pi}{6}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\left(1\right)\\sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow x-\dfrac{\pi}{4}=k\pi\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
mà \(x\in\left[0;2\pi\right]\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}\\x=\dfrac{5\pi}{4}\end{matrix}\right.\)
Từ (2)\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
mà \(x\in\left[0;2\pi\right]\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\pi\\x=\dfrac{2\pi}{3}\end{matrix}\right.\)
(Chắc là tìm tổng T?)\(\Rightarrow T=\dfrac{\pi}{4}+\dfrac{5\pi}{4}+0+2\pi+\dfrac{2\pi}{3}=\dfrac{25\pi}{6}\)
Câu 3:
\(f\left(x\right)=\sqrt{sin^2x-4cosx+2m}\)
Để hàm số f(x) có tập xác định là R \(\Leftrightarrow sin^2x-4cosx+2m\ge0\forall x\)
\(\Leftrightarrow-cos^2x-4cosx+1+2m\ge0;\forall x\)
\(\Leftrightarrow2m\ge cos^2x+4cosx-1;\forall x\) (*)
Đặt \(g\left(x\right)=cos^2x+4cosx-1\)
Từ (*) \(\Leftrightarrow2m\ge\max\limits_{x\in R}g\left(x\right)\)
Vẽ bảng biến thiên của g(x) với \(-1\le cosx\le1\) sẽ tìm được max \(g\left(x\right)=4\)
\(\Leftrightarrow2m\ge4\)
\(\Leftrightarrow m\ge2\)
Vậy... (Xem hộ đáp án đúng ko?)
a, \(y=sin^2x-2sinx+3cos^2x\)
\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)
\(=3-2sinx-2sin^2x\)
Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)
\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)
\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)
b, \(y=sinx-cosx+sin2x+5\)
\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)
Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)
\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)
\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)
\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha \le 1\;\; \Leftrightarrow - 2 \le \sin x + \cos x \le 2\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).
a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)
\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)