K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

\(y=\sqrt{1+cos4x}-2\)

+) \(y=\sqrt{1+cos4x}-2\ge-2\)

\(\Rightarrow min=-2\Leftrightarrow cos4x=-1\Leftrightarrow4x=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

+) \(cos4x\in\left[-1;1\right]\Rightarrow1+cos4x\le2\Rightarrow y=\sqrt{1+cos4x}-2\le\sqrt{2}-2\)

\(\Rightarrow max=\sqrt{2}-2\Leftrightarrow cos4x=1\Leftrightarrow4x=k2\pi\Leftrightarrow x=\dfrac{k\pi}{2}\)

6 tháng 9 2021

\(y=\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\)

\(\sin^6x+\cos^6x=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\\ =\left(\sin^2x+\cos^2x\right)^2-3\sin^2x\cdot\cos^2x=1-\dfrac{3}{4}\sin^22x\)

Do \(0\le\sin^22x\le1\Leftrightarrow\dfrac{3}{4}\cdot0\ge-\dfrac{3}{4}\sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}\sin^22x\ge1-\dfrac{3}{4}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4}{3}\ge\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)\ge\dfrac{1}{4}\cdot\dfrac{4}{3}=\dfrac{1}{3}\)

Ta có \(-1\le\cos4x\le1\)

\(\Leftrightarrow\dfrac{1}{3}-1-1\le\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\le\dfrac{4}{3}+1-1\\ \Leftrightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)

Vậy \(y_{min}=-\dfrac{5}{3};y_{max}=\dfrac{4}{3}\)

 

NV
6 tháng 9 2021

\(y=\dfrac{4}{3}\left(sin^6x+cos^6x\right)+cos4x-1\)

\(y=\dfrac{4}{3}\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)+cos4x-1\)

\(y=\dfrac{3}{2}cos4x-\dfrac{1}{6}\)

\(-1\le cos4x\le1\Rightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)

\(y_{min}=-\dfrac{5}{3}\) khi \(cos4x=-1\)

\(y_{max}=\dfrac{4}{3}\) khi \(cos4x=1\)

NV
18 tháng 9 2020

1.

\(-1\le sin7x\le1\Rightarrow-7\le y\le3\)

\(y_{min}=-7\) khi \(sin7x=-1\)

\(y_{max}=3\) khi \(sin7x=1\)

2.

Miền xác định của hàm \(D=R\backslash\left\{0\right\}\) là miền đối xứng

\(y\left(-x\right)=\frac{cos\left(-4x\right)}{2\left(-x\right)}=-\frac{cos4x}{2x}=-y\left(x\right)\)

Hàm lẻ

13 tháng 9 2021

giúp mik vs gấp lắm:<<

10 tháng 7 2021

undefined