Giúp mik nhanh vơi Tìm GTNN, GTLN y= căn 1+cos4x -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\)
\(\sin^6x+\cos^6x=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\\ =\left(\sin^2x+\cos^2x\right)^2-3\sin^2x\cdot\cos^2x=1-\dfrac{3}{4}\sin^22x\)
Do \(0\le\sin^22x\le1\Leftrightarrow\dfrac{3}{4}\cdot0\ge-\dfrac{3}{4}\sin^22x\ge-\dfrac{3}{4}\)
\(\Leftrightarrow1\ge1-\dfrac{3}{4}\sin^22x\ge1-\dfrac{3}{4}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4}{3}\ge\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)\ge\dfrac{1}{4}\cdot\dfrac{4}{3}=\dfrac{1}{3}\)
Ta có \(-1\le\cos4x\le1\)
\(\Leftrightarrow\dfrac{1}{3}-1-1\le\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\le\dfrac{4}{3}+1-1\\ \Leftrightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)
Vậy \(y_{min}=-\dfrac{5}{3};y_{max}=\dfrac{4}{3}\)
\(y=\dfrac{4}{3}\left(sin^6x+cos^6x\right)+cos4x-1\)
\(y=\dfrac{4}{3}\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)+cos4x-1\)
\(y=\dfrac{3}{2}cos4x-\dfrac{1}{6}\)
\(-1\le cos4x\le1\Rightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)
\(y_{min}=-\dfrac{5}{3}\) khi \(cos4x=-1\)
\(y_{max}=\dfrac{4}{3}\) khi \(cos4x=1\)
1.
\(-1\le sin7x\le1\Rightarrow-7\le y\le3\)
\(y_{min}=-7\) khi \(sin7x=-1\)
\(y_{max}=3\) khi \(sin7x=1\)
2.
Miền xác định của hàm \(D=R\backslash\left\{0\right\}\) là miền đối xứng
\(y\left(-x\right)=\frac{cos\left(-4x\right)}{2\left(-x\right)}=-\frac{cos4x}{2x}=-y\left(x\right)\)
Hàm lẻ
\(y=\sqrt{1+cos4x}-2\)
+) \(y=\sqrt{1+cos4x}-2\ge-2\)
\(\Rightarrow min=-2\Leftrightarrow cos4x=-1\Leftrightarrow4x=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
+) \(cos4x\in\left[-1;1\right]\Rightarrow1+cos4x\le2\Rightarrow y=\sqrt{1+cos4x}-2\le\sqrt{2}-2\)
\(\Rightarrow max=\sqrt{2}-2\Leftrightarrow cos4x=1\Leftrightarrow4x=k2\pi\Leftrightarrow x=\dfrac{k\pi}{2}\)