8/117
cho tam giác nhọn ABC nội tiếp đường tròn O . gọi H là giao điểm của 2 đường cao BD và CE
A/ chứng minh tứ giác BCDE nội tiếp và xác định tâm I của đường tròn này
B/ vẽ đường kính AK của đường tròn O . chứng minh tứ giác BHCK là hình bình hành rồi suy ra 3 điểm H,I,K thẳng hàng
C/ giả sử BC = 3/4 AK . tính tổng AB.CK+AC.BK
thankkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp
Gọi I là trung điểm BC
Vì \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)
Vì \(\Delta BDC\) vuông tại D có I là trung điểm BC \(\Rightarrow ID=IB=IC\)
\(\Rightarrow ID=IE=IB=IC\Rightarrow I\) là tâm của (BCDE)
b) Vì AK là đường kính \(\Rightarrow\angle ABK=\angle ACK=90\)
\(\Rightarrow\left\{{}\begin{matrix}BK\bot AB\\CK\bot AC\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}CH\bot AB\\BH\bot AC\end{matrix}\right.\Rightarrow\) \(CH\parallel BK,BH\parallel CK\)
\(\Rightarrow BHCK\) là hình bình hành có I là trung điểm BC
\(\Rightarrow H,I,K\) thẳng hàng