K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2021

Nhìn đồ thị ta thấy \(f\left(x\right)\) tiếp xúc trục hoành tại điểm \(x=1\) nên \(x=1\) là nghiệm kép (đồ thị cắt trục hoành tại điểm nào thì đó là nghiệm đơn, tiếp xúc là nghiệm kép)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Bạn nên show toàn bộ lời giải để mọi người hiểu cách bạn làm hơn.

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
$\Delta'=m^2-m+3>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$.

Khi đó, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=2m$

$x_1x_2=m-3$
Để $x_1,x_2\in (1;+\infty)$ thì:
\(\left\{\begin{matrix} x_1+x_2>2\\ (x_1-1)(x_2-1)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1+x_2>2\\ x_1x_2-(x_1+x_2)+1>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2m>2\\ m-3-2m+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>1\\ m< -2\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $m$ để pt có 2 nghiệm pb thuộc khoảng đã cho.

14 tháng 3 2017

x\(^2\)- (m-1)x + 4=0 ( a=1; b=-(m-1);c=4)

\(\Delta\)= (-(m-1))2-4x4x1

\(\Delta\)=m2-2m+1-4

\(\Delta\)=m2 - 2m -3  

Để pt đã cho có n kép thì \(\Delta\)=0 

\(\Leftrightarrow\)m2-2m -3 =0 ( đk m \(\ne\)0 ) (a = 1 ;b =-2 ; c= -3 )

Ta có ; a- b + c = 1 -(-2) +( -3)=0

nên pt đã cho có  2 nghiêm m1= -1 ; m2\(\frac{-c}{a}\)= -\(\frac{-3}{1}\)=3

vậy pt đã cho có 2 n m=-1 ; m2= 3

14 tháng 3 2017

bn ơi nhớ đối chiếu đk  nhé cái chỗ tìm m đối chiếu m xem có tmđk m\(\ne\)0 ko nhé 

25 tháng 9 2016

f (1) = (1-1). f (1) = (1+4).f (1+8) 

\(\Rightarrow\)0 = 5 . f (9)   Vậy 9 là 1 nghiệm của đa thức

f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)

\(\Rightarrow\)-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức 

Do đó f (x) có 2 nghiệm là 9 và -4.

Còn nhập TTĐ thì mình ko biết

15 tháng 4 2018

f (1) = (1-1). f (1) = (1+4).f (1+8) 

0 = 5 . f (9)   Vậy 9 là 1 nghiệm của đa thức

f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)

-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức 

Do đó f (x) có 2 nghiệm là 9 và -4.

Còn nhập TTĐ thì mình ko biết

NV
10 tháng 4 2021

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)

\(=4m^2-8m+4-8m-8+8\sqrt{2}\)

\(=4m^2-16m+8\sqrt{2}-4\)

Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)

=>\(m^2-4m+2\sqrt{2}-1=0\)

=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)

28 tháng 7 2019

\(x\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x-1=0\)hoặc \(x-2=0\)

\(\Leftrightarrow x=0\)hoặc \(x=1\)hoặc \(x=2\)

Vậy \(x\in\left\{0;1;2\right\}\)

Câu cuối bạn hỏi ko biết

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với