cho x=y+5. tính: x(x+2)+y(y-2)-2xy+65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x=5+y => x-y=5
đặt \(A=x^2+y\left(y-2x\right)+75\)
\(=x^2+y^2-2xy+75\)
\(=\left(x-y\right)^2+75\)
\(=5^2+75\)
=100
b) đặt \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+65\)
\(=x^2+2x+y^2-2y-2xy+65\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
\(=5^2+2.5+65\)
=100
Lần sau bạn ghi đúng lớp ạ
x( x + 2 ) + y( y - 2 ) - 2xy + 65
= x2 + 2x + y2 - 2y - 2xy + 65
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 65
= ( x - y )2 + 2( x - y ) + 65
Rồi x - y bằng bao nhiêu bạn thế vô
Good luck
a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)
=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)
=>\(xy=5k;x^2+y^2=8k\)
\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)
b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)
=>x=a*k; y=b*k; z=c*k
\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
Ta có : \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(N=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(N=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y=-5\)vào ta được :
\(N=\left(-5\right)^3-\left(-5\right)^2\)
\(N=-125-25\)
\(N=-150\)
Vậy \(N=-150\)với \(x-y=-5\)
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150
\(P=2x^2y+2xy^2-2xy+5\)
\(P=2xy\left(x+y-1\right)+5\)
Thay x + y = 1 ta có :
\(P=2xy\left(1-1\right)+5\)
\(P=2xy\cdot0+5\)
\(P=5\)
Vậy....
\(A=\left(x+y\right)^2-8\left(x+y\right)+2\)
Thay x + y = 5 vào A, ta được:
\(A=5^2-8.5+2=-13\)
Vậy x + y = 5 thì A = -13
\(A=\left(x+y\right)^2-8\left(x+y\right)+16-14\\ A=\left(x+y-4\right)^2-14\\ A=\left(5-4\right)^2-14=-13\)
\(A=x^2+2xy+y^2-8x-8y+2\)
\(=\left(x+y\right)^2-8\left(x+y\right)+2\)
\(=5^2-8.5+2\)
\(=-13\)
Vậy \(A=-13\) khi x + y = 5
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
Ta có : \(x^2+2x+y^2-2y-2xy+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
Mà \(x=y+5\)
\(\Rightarrow x-y=5\)
- Thay x - y = 5 vào đa thức trên ta được :
\(=\left(x-y\right)^2+2\left(x-y\right)+65=100\)
Vậy ...