K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(\Rightarrow\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân \(\Rightarrow\left\{{}\begin{matrix}SA=AB=a\\SB=a\sqrt{2}\end{matrix}\right.\) 

\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)

\(\dfrac{V_{SAHIK}}{V_{SABCD}}=\dfrac{2V_{SAHI}}{2V_{SABC}}=\dfrac{V_{SAHI}}{V_{SABC}}=\dfrac{SH}{SB}.\dfrac{SI}{SC}=\left(\dfrac{SA}{SB}\right)^2\left(\dfrac{SA}{SC}\right)^2=\left(\dfrac{a}{a\sqrt{2}}\right)^2\left(\dfrac{a}{a\sqrt{3}}\right)^2=\dfrac{1}{6}\)

\(\Rightarrow V_{SAIHK}=\dfrac{1}{6}V_{SABCD}=\dfrac{1}{6}.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{18}\)

NV
30 tháng 6 2021

Bạn coi lại đề, AHIK là 1 tứ giác nên ko thể có thể tích

NV
30 tháng 6 2021

\(\dfrac{V_{SAHKE}}{V_{SABCD}}=\dfrac{2V_{SAHK}}{2V_{SABC}}=\dfrac{V_{SAHK}}{V_{SABC}}\)

\(V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.BC=\dfrac{a^3}{3}\)\(V_{SABCD}=\dfrac{2a^3}{3}\)

\(\dfrac{SH}{SB}=\dfrac{SA^2}{SB}:SB=\left(\dfrac{SA}{SB}\right)^2\)\(\dfrac{SK}{SC}=\dfrac{SA^2}{SC}:SC=\left(\dfrac{SA}{SC}\right)^2\)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(SC=\sqrt{SA^2+AC^2}=a\sqrt{6}\)

\(\dfrac{V_{SAHK}}{V_{SABC}}=\left(\dfrac{SA}{SB}\right)^2.\left(\dfrac{SA}{SC}\right)^2\)

\(\Rightarrow V_{SAHKE}=\left(\dfrac{2a}{a\sqrt{5}}\right)^2.\left(\dfrac{2a}{a\sqrt{6}}\right)^2.\dfrac{2a^3}{3}=\dfrac{16a^3}{45}\)

5 tháng 10 2018

Chọn đáp án B

15 tháng 12 2017

Đáp án C

3 tháng 4 2018

Đáp án là C

NV
30 tháng 6 2021

Do \(SA=SB=SC=SD\) và đáy là hình vuông nên \(SABCD\) là chóp đều

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Theo tính đối xứng của chóp đều \(\Rightarrow SB'=SD'\Rightarrow B'D'||BD\)

Gọi M là giao điểm SO và AC' \(\Rightarrow M\in B'D'\) (t/c giao tuyến 3 mp cắt nhau)

Áp dụng định lý Talet:

\(\dfrac{SM}{SO}=\dfrac{SD'}{SD}=\dfrac{SB'}{SB}=\dfrac{2}{3}\Rightarrow M\) là trọng tâm tam giác SAC

\(\Rightarrow C'\) là trung điểm SC \(\Rightarrow\dfrac{SC'}{SC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{V_{SAB'C'D'}}{V_{SABCD}}=\dfrac{2V_{SAB'C'}}{2V_{SABC}}=\dfrac{V_{SAB'C'}}{V_{SABC}}=\dfrac{SA}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=1.\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

2 tháng 8 2018

Đáp án B.

Gọi O là tâm của hình vuông ABCD, nối S O ∩ B ' D ' = I . 

Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.

Tam giác SAC vuông tại A, có S C 2 = S A 2 + A C 2 = 6 a 2 ⇒ S C = a 6 . 

Ta có B C ⊥ S A B ⇒ B C ⊥ A B '  và S B ⊥ A B ' ⇒ A B ' ⊥ S C . 

Tương tự A D ' ⊥ S C  suy ra  S C ⊥ ( A B ' D ' ) ≡ ( A B ' C ' D ' ) ⇒ S C ⊥ A C ' .

Mà S C ' . S C = S A 2 ⇒ S C ' S C = S A 2 S C 2 = 2 3  và S B ' S B = S A 2 S B 2 = 4 5 . 

Do đó  V S . A B ' C ' = 8 15 V S . A B C = 8 30 V S . A B C D  mà V S . A B C D = 1 3 . S A . S A B C D = 2 a 3 3 . 

Vậy thể tích cần tính là  V S . A B ' C ' D ' = 2 . V S . A B ' C ' = 16 a 3 45

18 tháng 2 2017

Chọn D

           

5 tháng 11 2018

Chọn đáp án A

+ Ta có

nên K là trọng tâm của tam giác BCD

+ Ta dễ dàng chứng minh được SH  ⊥ (BKH) ⇒ SB, (BKH) = SBH

NV
18 tháng 3 2023

Kẻ AE vuông góc SC (E thuộc SC)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\)

\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\)

Hoàn toàn tương tự ta có \(AN\perp SC\Rightarrow SC\perp\left(AMN\right)\)

Mà \(AE\perp SC\Rightarrow E\in\left(AMN\right)\)

\(\Rightarrow AE\) là hình chiếu vuông góc của SA lên (AMN)

\(\Rightarrow\widehat{SAE}\) là góc giữa SA và (AMN)

\(AC=a\sqrt{2}\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)

\(\Delta SAC\) vuông cân tại A \(\Rightarrow AE=SE=\dfrac{1}{2}SC=a\)

\(\Rightarrow\Delta SAE\) vuông cân tại E \(\Rightarrow\widehat{SAE}=45^0\)

NV
18 tháng 3 2023

loading...