Cho tam giác ABC có B = 45°, C = 30°, BC = 10cm, tính AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Tam giác ABC có:
Sin B = AC/BC (hệ thức lượng)
=> AC = Sin B.BC = Sin 450 . 10 = 5√2 (cm)
Sin C = AB/BC
=> AB = Sin 300 . 10 = 5 (cm)
Ta có tam giác ABC có: góc A + góc B + góc C = 1800
=> góc A = 1800 - 450 - 300 = 1050
Tam giác ABC có: Sin B = (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = (cm)
Sin C = (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)
Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)
=> góc A = 1800 - 450 - 300 = 1050
\(B=45^o\Rightarrow C=90-45=45^o\)
\(BH=10cm;HC=15cm\)
\(BC=HB+HC=10+15=25\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}\Rightarrow AC=BC.SinB=25.Sin45^o=\dfrac{25\sqrt[]{2}}{2}\left(cm\right)\)
\(SinC=\dfrac{AB}{BC}\Rightarrow AB=BC.SinC=25.Sin45^o=\dfrac{25\sqrt[]{2}}{2}\left(cm\right)\)
\(AH^2=HB.HC=10.15=150\)
\(\Rightarrow AH=\sqrt[]{150}=5\sqrt[]{6}\left(cm\right)\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)