Chứng tỏ rẳng tổng sau chia hết cho 5 biết S= 2+2^2+2^3+2^4+.....2^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 22 + 24 + 26 + 28 + ... + 218 + 220
A = ( 22 + 24 ) + ( 26 + 28 ) + ... + ( 218 + 220 )
A = 20 + ( 26 . 1 + 26 . 22 ) + ... + ( 218 . 1 + 218 . 22 )
A = 20 + 24 ( 22 + 24 ) + ... + 216 ( 22 + 24 )
A = 20 . ( 24 + ... + 216 ) \(⋮\)5
Vậy A \(⋮\)5
Học tốt!!!
Số số hạng của S:
20 - 0 + 1 = 21 (số)
Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)
= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3¹⁸.13
= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13
Vậy S ⋮ 13
S= 1+3+32+33+34+...+319+320
S= (1+3+32) + (33+34+35) + ... + (318+319+320)
S= 13.1+ 32.(1+3+32) + 317.(1+3+32)
S= 13.1+32.13+317.13
S= 13.(1+32+317) \(⋮\) 13
S\(⋮\) 13
Vậy S\(⋮\) 13
Gọi tổng trên là A
A=2+22+23+....+220
A=(2+23)+(24+22)+....+(218+220)
A=(..0)+(..0)+.....(....0)
A=(..0)
Từ đó suy ra tổng trên chia hết cho10
Phân tích :
20 = 2 . 10
Tận cùng dãy trên có tận cùng là 0 nên chia hết cho 10
Vì tổng trên toàn các số chia hết cho 2 nên tổng chia hết cho 2 .
Chia hết cho cả 2 và 10 đồng nghĩa với việc số đó chia hết cho 20
Ta có : A=22+24+26+...+220
=(22+24)+(26+28)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5 chia hết cho 5
Vậy A chia hết cho 5.
\(A=2^2+2^4+2^6..+2^{18}+2^{20}\)
\(\Leftrightarrow A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...+\left(2^{18}+2^{20}\right)\)
\(\Leftrightarrow A=20+2^4.\left(2^2+2^4\right)+...+2^{16}.\left(2^2+2^4\right)\)
\(\Leftrightarrow A=20+2^4.20+..+2^{16}.20\)
\(\Leftrightarrow A=20\left(1+2^4+..+2^{16}\right)\)
Vì \(20⋮5\)
\(\Rightarrow A=20\left(1+2^4+..+2^{16}\right)⋮5\)
Vậy \(A⋮5\)
hok tốt!!
Lời giải:
$S=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$
$=15(2+2^5+....+2^{17})\vdots 15\vdots 5$